Download Free Comparative Surface And Nano Tribological Characteristics Of Nanocomposite Diamond Like Carbon Thin Films Doped By Silver Book in PDF and EPUB Free Download. You can read online Comparative Surface And Nano Tribological Characteristics Of Nanocomposite Diamond Like Carbon Thin Films Doped By Silver and write the review.

In this study we have deposited silver-containing hydrogenated and hydrogen-free diamond-like carbon (DLC) nanocomposite thin films by plasma immersion ion implantation-deposition methods. The surface and nano-tribological characteristics were studied by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and nano-scratching experiments. The silver doping was found to have no measurable effect on sp2-sp3 hybridization of the hydrogenated DLC matrix and only a slight effect on the hydrogen-free DLC matrix. The surface topography was analyzed by surface imaging. High- and low-order roughness determined by AFM characterization was correlated to the DLC growth mechanism and revealed the smoothing effect of silver. The nano-tribological characteristics were explained in terms of friction mechanisms and mechanical properties in correlation to the surface characteristics. It was discovered that the adhesion friction was the dominant friction mechanism; the adhesion force between the scratching tip and DLC surface was decreased by hydrogenation and increased by silver doping.
During the past few years, scientists have achieved significant successes in nanoscience and technology. Nanotechnology is a branch of science that deals with fine structures and materials with very small dimensions - less than 100 nm. The composite science and technology have also benefits from nanotechnology. This book collects new developments about diamond and carbon composites and nanocomposites and their use in manufacturing technology.
This book highlights some of the most important structural, chemical, mechanical and tribological characteristics of DLC films. It is particularly dedicated to the fundamental tribological issues that impact the performance and durability of these coatings. The book provides reliable and up-to-date information on available industrial DLC coatings and includes clear definitions and descriptions of various DLC films and their properties.
In-depth knowledge on tribological applications of hybrid composites Synthesis and Tribological Applications of Hybrid Materials provides a comprehensive overview of tribological properties of hybrid composites. The book offers an understanding of the processes, materials, techniques and mechanisms related to the tribological concepts and includes information on the most recent developments in the field. With contributions from an international panel of experts, the book discusses the synthesis and characterization of hybrid materials, as well as their applications in biotechnological and biomedical fields. The book covers a wide-range of versatile topics such as: Tribological assessment on accelerated aging bones in polymeric condition; Nano fracture and wear testing on natural bones; Tribological behaviour of glass fiber with fillers reinforced hybrid polymer composites and jute/glass hybrid composites; Wear properties of glass fiber hybrid, and acid- and silane-modified CNT filled hybrid glass/kenaf epoxy composites; Hybrid natural fibre composites as a friction material; and much more. This important resource: -Discusses recent advancements in the field of tribology and hybrid materials -Offers a guide for professionals in the fields of materials science, mechanical engineering, biomaterials, chemistry, physics and nanotechnology -Integrates theory, synthesis and properties of nybrid materals as well as their applications -Offers an outlook to the future of this burgeoning technology Written for materials scientists, surface chemists, bioengineers, mechanical engineers, engineering scientists and chemical industry professionals, Synthesis and Tribological Applications of Hybrid Materials is a comprehensive resource that explores the most recent developments in the field.
Materials of extreme wetting properties have received significant attention, as they offer new perspectives providing numerous potential applications. Water- and oil-repellent surfaces can be used, for instance, in the automobile, microelectronics, textile and biomedical industries; in the protection and preservation of constructions, buildings and cultural heritage; and in several other applications relevant to self-cleaning, biocide treatments, oil–water separation and anti-corrosion, just to name a few. The papers included in this book present innovative production methods of advanced materials with extreme wetting properties that are designed to serve some of the abovementioned applications. Moreover, the papers explore the scientific principles behind these advanced materials and discuss their applications to different areas of coating technology.
Materials development has reached a point where it is difficult for a single material to satisfy the needs of sophisticated applications in the modern world. Nanocomposite films and coatings achieve much more than the simple addition of the constitutents — the law of summation fails to work in the nano-world. This book encompasses three major parts of the development of nanocomposite films and coatings: the first focuses on processing and properties, the second concentrates on mechanical performance, and the third deals with functional performance, including wide application areas ranging from mechanical cutting to solar energy and from electronics to medicine./a
Carbon Nanomaterials: Modeling, Design, and Applications provides an in-depth review and analysis of the most popular carbon nanomaterials, including fullerenes, carbon nanotubes, graphene and novel carbon nanomaterial-based membranes and thin films, with emphasis on their modeling, design and applications. This book provides basic knowledge of the structures, properties and applications of carbon-based nanomaterials. It illustrates the fundamental structure-property relationships of the materials in both experimental and modeling aspects, offers technical guidance in computational simulation of nanomaterials, and delivers an extensive view on current achievements in research and practice, while presenting new possibilities in the design and usage of carbon nanomaterials. This book is aimed at both undergraduate and graduate students, researchers, designers, professors, and professionals within the fields of materials science and engineering, mechanical engineering, applied physics, and chemical engineering.
Diamond-like carbon thin films are been used in wide range of applications due to their attractive tribological properties. Metal-doped DLC films have significant properties which make them compatible to use in larger variety of applications. The present study examines the dispersion and their effect on various tribological properties when Ag is incorporated into the DLC thin films. These Ag-DLC nanocomposite films were synthesized by a hybrid CVD and magnetron sputtering process in a discharge composed of CH4, and Ar atmosphere. These DLC and Ag-DLC films were characterized by Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS) and Raman Spectroscopy. Tribological tests were carried out to measure the frictional and wear behavior of the Ag-DLC films as a function of Ag content. The TEM cross sectional studies revealed that Ag is present as Ag nanoparticles that were distributed uniformly throughout an amorphous DLC matrix. XPS analysis confirmed that Ag in the nanoparticles was present in the metallic form. Increasing the Ag content in the film, reduced its sp3 content. The incorporation of these nanoparticles causes a reduction in hardness in Ag-DLC when compared with pure DLC films. Microhardness of DLC films exhibits values up to a maximum of 16 GPa and gradually decreases with increasing in Ag content. FTIR and Raman studies confirmed that the films contain a significant amount of hydrogen, and with an increase in the Ag content in the DLC film results in an increase in sp2 carbon content. Finally, the friction behavior of the Ag-DLC films showed a comparable performance with that of DLC films with a coefficient of friction as low as 0.1. The DLC films exhibited a lower wear rate of 5.51x10−8 mm3/Nm than Ag-DLC films. The wear rate in the Ag-DLC films gradually increased with increasing Ag content but it remained at low levels (i.e., up to 1.7x10−7 mm3/Nm). This is consistent with the higher sp2 content of the Ag-DLC films.
Whether an airplane or a space shuttle, a flying machine requires advanced materials to provide a strong, lightweight body and a powerful engine that functions at high temperature. The Aerospace Materials Handbook examines these materials, covering traditional superalloys as well as more recently developed light alloys. Capturing state-of-the-art d
In this new handbook, top researchers from around the world discuss recent academic and industrial advances in designing ceramic coatings and materials. They describe the role of nanotechnology in designing high performance nanoceramic coatings and materials in terms of the unique advantages that can be gained from the nano scale, including the latest techniques for the synthesis and processing of ceramic and composite coatings for different applications. - Focuses on the most advanced technologies for industry-oriented nano-ceramic and nano-composite coatings, including recent challenges for scaling up nano-based coatings in industry - Covers the latest evaluation methods for measuring coatings performance - Discusses novel approaches for improving the performance of ceramic and composite coatings and materials via nanotechnology - Provides the most recent and advanced techniques for surface characterization