Download Free Comparative Crystal Chemistry Book in PDF and EPUB Free Download. You can read online Comparative Crystal Chemistry and write the review.

Volume 41 of Reviews in Mineralogy and Geochemistry introduces to the field of high-temperature and high-pressure crystal chemistry, both as a guide to the dramatically improved techniques and as a summary of the voluminous crystal chemical literature on minerals at high temperature and pressure. The three parts of the book introduces crystal chemical considerations of special relevance to non-ambient crystallographic studies, reviews the temperature- and pressure-variation of structures in major mineral groups and presents experimental techniques for high-temperature and high-pressure studies of single crystals and polycrystalline samples as well as special considerations relating to diffractometry on samples at non-ambient conditions.
A review of the study of crystal structures as affected by temperature, pressure, and composition. Consolidates the diverse literature on the acquisition and analysis of high-temperature and high-pressure crystallographic data. Provides a step-by-step guide to operation of single-crystal x-ray devices. Summarizes the results of several dozen studies utilizing high-temperature and high-pressure crystallographic techniques and instruments.
The study of crystal structures has had an ever increasing impact on many fields of science such as physics, chemistry, biology, materials science, medicine, pharmacy, metallurgy, mineralogy and geology. Particularly, with the advent of direct methods of structure determination, the data on crystal structures are accumulating at an unbelievable pace and it becomes more and more difficult to oversee this wealth of data. A crude rationalization of the structures of organic compounds and the atom coordinations can be made with the well-known Kekule model, however, no such generally applicable model exists for the structures of inorganiC and particularly intermetallic compounds. There is a need to rationalize the inorganic crystal structures, to find better ways of describing them, of denoting the geometrical relationships between them, of elucidating the electronic factors and of explaining the bonding between the atoms with the aim of not only having a better understanding of the known structures, but also of predicting structural features of new compounds.
The field of crystal engineering concerns the design and synthesis of molecular crystals with desired properties. This requires an in-depth understanding of the intermolecular interactions within crystal structures. This new book brings together the latest information and theories about intermolecular bonding, providing an introductory text for graduates. The book is divided into three parts. The first part covers the nature, physical meaning and methods for identification and analysis of intermolecular bonds. The second part explains the different types of bond known to occur in molecular crystals, with each chapter written by a specialist in that specific bond type. The final part discusses the cooperativity effects of different bond types present in one solid. This comprehensive textbook will provide a valuable resource for all students and researchers in the field of crystallography, materials science and supramolecular chemistry.
A long history -- Symmetry -- Crystal structures -- Diffraction -- Seeing atoms -- Sources of radiation
Volume 14 of Reviews in Mineralogy covers a short course about the relations among the microscopic structure of minerals and their macroscopic thermodynamic properties. Understanding the micro-to-macro relations provides a rigorous theoretical foundation for formulation of energy relations. With such a foundation, measured parameters can be understood, and extrapolation and prediction of thermodynamic properties beyond the range of measurement can be done with more confidence than if only empirical relations are used. The purpose of this course is to consider the microscopic factors that influence the free energy of minerals: atomic environments, bonding, and crystal structure. These factors influence the structural energy and the detailed nature of the lattice vibrations which are an important source of entropy and enthalpy at temperatures greater than 0 K. The same factors determine the relative energy of different phases, and thereby; the relative stability of different minerals. Configurational entropy terms arising from disorder also contribute to the energy and entropy. In transition metal compounds there are additional energy and entropy terms arising from the electronic configurations, leading to additional stabilizations, magnetic ordering, and, incidentally, color. Organized by Sue Kieffer and Alex Navrotsky, the course was presented by the ten authors of this book on the campus of Washington College in Chestertown, Maryland. This was the second of MSA's short courses to be given in conjunction with meetings of the American Geophysical Union.
Our understanding of the properties of materials, from drugs and proteins to catalysts and ceramics, is almost always based on structural information. This book describes the new developments in the realm of powder diffraction which make it possible for scientists to obtain such information even from polycrystalline materials. Written and edited by experts active in the field, and covering both the fundamental and applied aspects of structure solution from powder diffraction data, this book guides both novices and experienced practitioners alike through the maze of possibilities.
The book discusses the underlying physical principles of piezoelectric materials, important properties of ferroelectric/piezoelectric materials used in today’s transducer technology, and the principles used in transducer design. It provides examples of a wide range of applications of such materials along with the appertaining rationales. With contributions from distinguished researchers, this is a comprehensive reference on all the pertinent aspects of piezoelectric materials.
High-pressure mineral physics is a field that is strongly driven by the development of new technology. Fifty years ago, when experimentally achievable pressures were limited to just 25 GPa, little was know about the mineralogy of the Earth's lower mantle. Silicate perovskite, the likely dominant mineral of the deep Earth, was identified only when the high-pressure techniques broke the pressure barrier of 25 GPa in 1970s. However, as the maximum achievable pressure reached beyond one Megabar (100 GPa) and even to the pressure of Earth's core on minute samples, new discoveries increasingly were fostered by the development of new analytical techniques and improvements in sensitivity and precision of existing techniques. The book consists of six sections which group the papers according to their main topics: a) Elastic and Anelastic Properties; b) Rheology; c) Melt and Glass Properties; d) Structural and Magnetic Properties; e) Diffraction and Spectroscopy; f) Pressure Calibration and Generation. As many papers cover multiple topics, readers may find papers of interest in different sections. All papers are prepared with emphasis on technical details suitable for a technical reference. Many on-line software resources are also listed in as detailed a manner as possible. However, the URL of the software sites may be subject to change without notice.* State of the art in a very important branch of geophysics, namely the experimental determination of material behavior at the extreme conditions of planetary interiors* Emphasis on technical details suitable for a technical reference* Includes many on-line software resources
An insightful analysis of confined chemical systems for theoretical and experimental scientists Chemical Reactivity in Confined Systems: Theory and Applications presents a theoretical basis for the molecular phenomena observed in confined spaces. The book highlights state-of-the-art theoretical and computational approaches, with a focus on obtaining physically relevant clarification of the subject to enable the reader to build an appreciation of underlying chemical principles. The book includes real-world examples of confined systems that highlight how the reactivity of atoms and molecules change upon encapsulation. Chapters include discussions on recent developments related to several host-guest systems, including cucurbit[n]uril, ExBox+4, clathrate hydrates, octa acid cavitand, metal organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, fullerenes, and carbon nanotubes. Readers will learn how to carry out new calculations to understand the physicochemical behavior of confined quantum systems. Topics covered include: A thorough introduction to global reactivity descriptors, including electronegativity, hardness, and electrophilicity An exploration of the Fukui function, as well as dual descriptors, higher order derivatives, and reactivity through information theory A practical discussion of spin dependent reactivity and temperature dependent reactivity Concise treatments of population analysis, reaction force, electron localization functions, and the solvent effect on reactivity Perfect for academic researchers and graduate students in theoretical and computational chemistry and confined chemical systems, Chemical Reactivity in Confined Systems: Theory and Applications will also earn a place in the libraries of professionals working in the areas of catalysis, supramolecular chemistry, and porous materials.