Download Free Comparative Analysis Of Coarse Surfacing Aggregate Using Micro Deval La Abrasion And Sodium Sulfate Soundness Tests Book in PDF and EPUB Free Download. You can read online Comparative Analysis Of Coarse Surfacing Aggregate Using Micro Deval La Abrasion And Sodium Sulfate Soundness Tests and write the review.

Aggregates used in the construction of roads must be durable, abrasion resistant, and freeze thaw resistant in order to perform well in pavement or as base course. The objective of this study was to investigate whether the Micro Deval test will provide better, timelier, and more repeatable information about the quality of an aggregate than the Sodium Sulfate Soundness test. This objective was met by (1) conducting a thorough literature review, (2) testing a variety of soils from across Montana, and (3) analyzing these results to reveal potential trends. The literature review indicated that the Micro Deval test has good repeatability characteristics, and that it correlates well to field performance. Laboratory tests (Micro Deval, L.A. Abrasion, and Sodium Sulfate) were conducted on a variety of soil types to examine the repeatability of each test method, and to examine how well the methods correlate with each other in terms of predicting aggregate durability and degradation. Test results were normalized to facilitate direct comparisons between the three methods. Linear regression of the data points and corresponding confidence intervals were plotted to qualitatively assess agreement or disagreement between test methods. The authors concluded that the Micro Deval test is a suitable replacement for the Sodium Sulfate test as the primary method for evaluating aggregate durability, with limitations. Because there were some inconsistent durability determinations between test methodologies, the authors recommend that the Micro-Deval test results be further supported by a second aggregate durability test whenever the Micro Deval results fall between the cutoff value and plus 30 percent of the cutoff value. In other words, when the Micro Deval test result for an aggregate is between 18 and 24 percent loss, a second test using an alternate method is recommended before any conclusions are made regarding the durability or quality of an aggregate.
Approximately 10 to 11 million tons of aggregates are utilized in transportation infrastructure projects in Wisconsin annually. The quality of aggregates has a tremendous influence on the performance and durability of roadways and bridges. In this Phase II research study, detailed statistical analyses were performed on over 1,000 sets of historical aggregate test results and the experimental results from the Phase I study. Test results from other states were analyzed as well. Aggregate tests were performed on 12 known marginal or poor Wisconsin aggregates to specifically address test performance of such aggregates. Selected aggregates were scanned using X-ray computed tomography to assess the effects of freeze-thaw and sodium sulfate exposure on the internal void system. The results of multi-parameter logistic regression analyses show that the pass/fail outcomes of the Micro-Deval test can be predicted when LA abrasion, absorption, and sodium sulfate soundness test results are known. The unconfined freeze-thaw test outcomes cannot be predicted from results of other tests (not correlated). Therefore, the unconfined freeze-thaw test should be part of any test protocol as it measures an aggregate characteristic that cannot be obtained from other tests. The percentiles associated with any proposed acceptance threshold limits for various aggregate tests should be determined using the statistical data provided.
This book is one out of 8 IAEG XII Congress volumes, and deals with the theme of urban geology. Along with a rapidly growing world population, the wave of urban growth continues, causing cities to swell and new metropolitan centers to emerge. These global trends also open new ventures for underground city development. Engineering geology plays a major role in facing the increasing issues of the urban environment, such as: finding aggregates for construction works; providing adequate water supply and waste management; solving building problems associated to geological and geomorphological conditions; evaluating host rock conditions for underground constructions; preventing or mitigating geological and seismic hazards. Furthermore, this book illustrates recent advancements in sustainable land use planning, which includes conservation, protection, reclamation and landscape impact of open pit mining and alternative power generation. The Engineering Geology for Society and Territory volumes of the IAEG XII Congress held in Torino from September 15-19, 2014, analyze the dynamic role of engineering geology in our changing world and build on the four main themes of the congress: environment, processes, issues and approaches. The congress topics and subject areas of the 8 IAEG XII Congress volumes are: 1. Climate Change and Engineering Geology 2. Landslide Processes River Basins 3. Reservoir Sedimentation and Water Resources 4. Marine and Coastal Processes Urban Geology 5. Sustainable Planning and Landscape Exploitation 6. Applied Geology for Major Engineering Projects 7. Education, Professional Ethics and Public Recognition of Engineering Geology 8. Preservation of Cultural Heritage
As the world moves further into urbanization, there is a greater need for construction materials to meet society’s needs. As natural resources become scarce, the use of recycled materials for construction purposes has become increasingly common. Over the past decade, there has been a significant increase in the utilization of recycled materials in the construction industry. This will result in substantial advantages in structure and infrastructure construction coupled with a reduction in the construction cost, as well as improving sustainability. However, significant development limitations and many relevant considerations must be addressed when using recycled materials in construction. This book introduces innovative and alternative construction materials used in civil engineering.
This report contains guidelines and recommendations for managing and designing for friction on highway pavements. The contents of this report will be of interest to highway materials, construction, pavement management, safety, design, and research engineers, as well as others concerned with the friction and related surface characteristics of highway pavements.
In the years since the development and subsequent success of Stone Matrix Asphalt (SMA), a plethora of articles have emerged, scattered throughout various publications. The time is right for a comprehensive resource that collects, examines, and organizes this information and makes it easily accessible. A compilation and distillation of the latest k