Download Free Compact Reliability And Maintenance Modeling Of Complex Repairable Systems Book in PDF and EPUB Free Download. You can read online Compact Reliability And Maintenance Modeling Of Complex Repairable Systems and write the review.

Maintenance models are critical for evaluation of the alternative maintenance policies for modern engineering systems. A poorly selected policy can result in excessive life-cycle costs as well as unnecessary risks for catastrophic failures of the system. Economic dependence refers to the difference between the cost of combining the maintenance of a number of components and the cost of performing the same maintenance actions individually. Maintenance that takes advantage of this difference is often called opportunistic. Large number of components and economic inter-dependence are two pervasive characteristics of modern engineering systems that make the modeling of their maintenance processes particularly challenging. Simulation is able to handle both of these characteristics computationally, but the complexity, especially from the model verification perspective, becomes overwhelming as the number of components increases. This research introduces a new procedure for maintenance models of multi-unit repairable systems with economic dependence among its components and under opportunistic maintenance policies. The procedure is based on the stochastic Petri net with aging tokens modeling framework and it makes use of a component-level model approach to overcome the state explosion of the model combined with a novel order-reduction scheme that effectively combines the impact of other components into a single distribution. The justification for the used scheme is provided, the accuracy is assessed, and applications for the systems of realistic complexity are considered.
This book provides an application-oriented framework for reliability modeling and analysis of repairable systems in conjunction with the procurement process of weapon systems and throughput analysis for industries. Most of the reliability literature is directed towards non-repairable systems, that is, systems that fail are discarded or replaced. This book is mainly dedicated towards providing coverage to the reliability modeling and analysis of repairable systems that undergo failure-repair cycles. This unique book provides a comprehensive framework for the modeling and analysis of repairable systems considering both the non-parametric and parametric approaches to deal with their failure data. The book presents MCF based non-parametric approach with several illustrative examples and the generalized renewal process (GRP) based arithmetic reduction of age (ARA) models along with its applications to the systems failure data from the aviation industry. A complete chapter on an integrated framework for procurement process is devoted by utilizing the concepts of multi-criteria decision-making (MCDM) techniques which will of a great assistance to the readers in enhancing the potential of their respective organizations. This book also presents FMEA methods tailored for GRP based repairs. This text has primarily emerged from the industrial experience and research work of the authors. A number of illustrations have been included to make the subject lucid and vivid even to the readers who are relatively new to this area. Besides, various examples have been provided to display the applicability of presented models and methodologies to assist the readers in applying the concepts presented in this book.
ADVANCED TECHNIQUES FOR MAINTENANCE MODELING AND RELIABILITY ANALYSIS OF REPAIRABLE SYSTEMS This book covers advanced models and methodologies for reliability analysis of large, complex, and critical repairable systems that undergo imperfect maintenance actions in industries having MRO facilities and also covers real-life examples from the field of aviation. The content presented in this book is inspired by the existing limitations of the generalized renewal process (GRP) model and the problems confronted by the maintenance, repair, and operations (MRO) facilities in industries dealing with large and complex repairable systems. Through this book, the authors have attempted to equip the MRO facilities with more advanced scientific tools and techniques by addressing various limitations related to the reliability analysis of repairable systems. The book is dedicated to various imperfect maintenance-based virtual age models and methodologies to bridge various research gaps present in the available literature. A summary of deliverables is as follows: Presents the basic concepts of maintenance and provides a virtual age model that can accommodate all maintenance; Provides the basic concepts of censoring in repairable systems along with the concept of black box and failure modes. Also highlighted is how the proposed work will be useful for industries conducting failure modes and effect analysis (FMEA) and estimating the mean residual life (MRL) of repairable systems; Presents methodology that applies risk-based threshold on intensity function and provides a threshold to declare the system/component as high failure rate components (HFRCs); Identifying a system as HFRCs is an important task, but for an industry dealing with critical systems, preventing the system from being HFRC is more important, since the risk involved in such systems would be very high. Thus, the book presents a progressive maintenance policy (PMP) for repairable systems; Focusses on qualitative analysis of repair quality. Assuming repair quality as a subjective variable, the authors have presented various factors that affect the repair quality most and modeled their interdependency using Bayesian networks (BN). Audience Professional reliability engineers, reliability administrators, consultants, managers, and post-graduate students in engineering schools. The book belongs to any engineering, technical, and academic institution concerned with manufacturing, production, aviation, defense, and software industries.
Reliability is one of the fundamental criteria in engineering systems. Design and maintenance serve to support it throughout the systems life. As such, maintenance acts in parallel to production and can have a great impact on the availability and capacity of production and the quality of the products. The authors describe current and innovative methods useful to industry and society.
Complex high-technology devices are in growing use in industry, service sectors, and everyday life. Their reliability and maintenance is of utmost importance in view of their cost and critical functions. This book focuses on this theme and is intended to serve as a graduate-level textbook and reference book for scientists and academics in the field. The chapters are grouped into five complementary parts that cover the most important aspects of reliability and maintenance: stochastic models of reliability and maintenance, decision models involving optimal replacement and repair, stochastic methods in software engineering, computational methods and simulation, and maintenance management systems. This wide range of topics provides the reader with a complete picture in a self-contained volume.
This utterly comprehensive work is thought to be the first to integrate the literature on the physics of the failure of complex systems such as hospitals, banks and transport networks. It has chapters on particular aspects of maintenance written by internationally-renowned researchers and practitioners. This book will interest maintenance engineers and managers in industry as well as researchers and graduate students in maintenance, industrial engineering and applied mathematics.
Replacement Models with Minimal Repair is a collection of works by several well-known specialists on the subject of minimal repair in replacement policies. It gives an exhaustive list of minimal repair models for the effective planning of minimal repair and maintenance actions. Written in an engaging style, Replacement Models with Minimal Repair balances complex mathematical models with practical applications. It is divided into six parts that cover: mathematical modeling of minimal repair; preventive maintenance models and optimal scheduling of imperfect preventive maintenance activities; a new warranty servicing strategy with imperfect repair; mathematical models combining burn-in procedure and general maintenance policies; methods for parameters’ estimation of minimal repair models; and product support. Replacement Models with Minimal Repair is for anyone with an interest in minimal repair and its impact on maintenance policies and strategies. It is a particularly useful resource for researchers, practitioners, and graduate students.
To achieve commercialization and wide acceptance in industrial application, reliability analysis for complex evolving systems with multiple failure processes becomes increasingly important. The common assumption in analyzing reliability of such systems is that these multiple failure processes are independent, which may lead to the miscalculation of system reliability. To assist engineers with design, manufacturing and maintenance of complex systems, new reliability models that account for the dependence among multiple failure processes need to be developed to accurately predict the lifetime of these systems. This research aims to develop probabilistic reliability models and analytical tools for systems with dependent competing failure processes, and explore cost-effective maintenance policies based on our reliability analysis. Different dependent patterns among competing failure processes are explored for single-component systems. When the arrival of external shocks diminishes the strength of material, we propose reliability and maintenance models for systems with a shifting, dependent hard failure threshold. When shocks impact the degradation process in different manners, we model zoned shock effects on stochastic degradation, and develop reliability functions for such dependent stochastic failure processes. Case studies of micro-electro-mechanical systems and stent devices are used to demonstrate our models, where Monte Carlo importance sampling is used to estimate system reliability. We extend our models on single-component systems to a broader range of multi-component systems experiencing multiple failure processes, which presents more challenges on modeling the interaction and dependence among different components. A new reliability model and a unique condition-based maintenance model are proposed for complex systems with dependent components subject to respective degradation processes, and the dependence among components is established through environmental factors. Another condition-based maintenance policy is developed for power transformers using Markov decision processes, where a power transformer with multiple components is modeled as a multi-state system. The proposed reliability and maintenance models can be implemented to address the critical quality and reliability problems of evolving devices and many other systems with multiple dependent competing failure processes and multiple dependent components. The developed models and analytical tools can facilitate product design, manufacturing and maintenance, and enhance system reliability and availability.
Reliability and Safety of Complex Technical Systems and Processes offers a comprehensive approach to the analysis, identification, evaluation, prediction and optimization of complex technical systems operation, reliability and safety. Its main emphasis is on multistate systems with ageing components, changes to their structure, and their components reliability and safety parameters during the operation processes. Reliability and Safety of Complex Technical Systems and Processes presents integrated models for the reliability, availability and safety of complex non-repairable and repairable multistate technical systems, with reference to their operation processes and their practical applications to real industrial systems. The authors consider variables in different operation states, reliability and safety structures, and the reliability and safety parameters of components, as well as suggesting a cost analysis for complex technical systems. Researchers and industry practitioners will find information on a wide range of complex technical systems in Reliability and Safety of Complex Technical Systems and Processes. It may prove an easy-to-use guide to reliability and safety evaluations of real complex technical systems, both during their operation and at the design stages.
As our modern information-age society grows in complexity both in terms of embedded systems and applications, the problems and challenges in reliability become ever more complex. Bringing together many of the leading experts in the field, this volume presents a broad picture of current research on system modeling and optimization in reliability and its applications. The book comprises twenty-three chapters organized into four parts: Reliability Modeling, Software Quality Engineering, Software Reliability, and Maintenance and Inspection Policies. These sections cover a wide range of important topics, including system reliability modeling, optimization, software reliability and quality, maintenance theory and inspection, reliability failure analysis, sampling plans and schemes, software development processes and improvement, stochastic process modeling, statistical distributions and analysts, fault-tolerant performance, software measurements and cost effectiveness, queueing theory and applications, system availability, reliability of repairable systems, testing sampling inspection, software capability maturity model, accelerated life modeling, statistical control, and HALT testing.