Download Free Compact Blue Green Lasers Book in PDF and EPUB Free Download. You can read online Compact Blue Green Lasers and write the review.

William Risk, Timothy Gosnell and Arto Nurmikko have brought together their diverse expertise from industry and academia to write the first fully comprehensive book on the generation and application of blue-green lasers. This volume describes the theory and practical implementation of three techniques for the generation of blue-green light: nonlinear frequency conversion of infrared lasers, upconversion lasers, and wide bandgap semiconductor diode lasers. In addition, it looks at the various applications that have driven the development of compact sources of blue-green light, and reflects on the recent application of these lasers in high-density data storage, color displays, reprographics, and biomedical technology. Compact Blue-Green Lasers is suitable for graduate-level courses or as a reference for academics and professionals in optics, applied physics, and electrical engineering.
Developments in lasers continue to enable progress in many areas such as eye surgery, the recording industry and dozens of others. This book presents citations from the book literature for the last 25 years and groups them for ease of access which is also provided by subject, author and titles indexes.
Anna Consortini, The President of the International Commission for Optics (ICO), has accommodated a broad spectrum of optical science topics in Trends in Optics. This book, a compilation of research reviews written by outstanding figures in the field of optics, is aimed not only at specialists in the optical sciences, but also at scientists in other fields who might want to broaden their knowledge of optics. The latest developments in this rapidly progressing field are described, and new applications are detailed--including some previously undisclosed material on the U.S. 'Star Wars project. Authoritative and approachable, this volume should provide comprehensive insight into the ever-expanding optical sciences. Key Features * Edited by the president of the International Commission for Optics * Includes research reviews written by experts in the field * Compiles a wide range of topics in optical science
Providing a comprehensive overview of developments to both the academic and industrial communities, Compound Semiconductors 1996 covers all types of compound semiconducting materials and devices. The book includes results on blue and green lasers, heterostructure devices, nanoelectronics, and novel wide band gap semiconductors. With invited review papers and research results in current topics of interest, this volume is part of a well-known series of conferences for the dissemination of research results in the field.
Wide-band-gap semiconductors have been a research topic for many decades. However, it is only in recent years that the promise for technological applications came to be realized; simultaneously an upsurge of experimental and theoretical activity in the field has been witnessed. Semiconductors with wide band gaps exhibit unique electronic and optical properties. Their low intrinsic carrier concentrations and high breakdown voltage allow high-temperature and high-power applications (diamond, SiC etc.). The short wavelength of band-to-band transitions allows emission in the green, blue, or even UV region of the spectrum (ZnSe, GaN, etc.). In addition, many of these materials have favorable mechanical and thermal characteristics. These proceedings reflect the exciting progress made in this field. Successful p-type doping of ZnSe has recently led to the fabrication of blue-green injection lasers in ZnSe; applications of short-wavelength light-emitting devices range from color displays to optical storage. In SiC, advances in growth techniques for bulk as well as epitaxial material have made the commercial production of high-temperature and high-frequency devices possible. For GaN, refinement of growth procedures and new ways of obtaining doped material have resulted in blue-light-emitting diodes and opened the road to the development of laser diodes. Finally, while the quality of artificial diamond is not yet high enough for electronic applications, the promise it holds in terms of unique material properties is encouraging intense activity in the field. This volume contains contributions from recognized experts presently working on different material systems in the field. The papers cover the theoretical, experimental and application-oriented aspects of this exciting topic.
Rare-Earth-Doped Fiber Lasers and Amplifiers, Second Edition discusses the essential principles, operating characteristics, and current technology of the main fiber laser and amplifier devices based on rare-earth-doped silica and fluorozirconate fibers. Covering all aspects of this revolutionary technology, the book reviews fiber fabrication methods and the basic spectroscopic properties of rare-earth ions in glasses, concentrates on the most important fiber laser sources, examines several advances in fiber amplifiers, and analyzes new findings and improvements in single-frequency operation, frequency tenability, broadband fiber sources, and blue-green and far-infrared fiber lasers.
This new edition features numerous updates and additions. Especially 4 new chapters on Fiber Optics, Integrated Optics, Frequency Combs and Interferometry reflect the changes since the first edition. In addition, major complete updates for the chapters: Optical Materials and Their Properties, Optical Detectors, Nanooptics, and Optics far Beyond the Diffraction Limit. Features Contains over 1000 two-color illustrations. Includes over 120 comprehensive tables with properties of optical materials and light sources. Emphasizes physical concepts over extensive mathematical derivations. Chapters with summaries, detailed index Delivers a wealth of up-to-date references.
A huge number of applications require coherent radiation in the visible spectral range. Since diode lasers are very compact and efficient light sources, there exists a great interest to cover these applications with diode laser emission. Despite modern band gap engineering not all wavelengths can be accessed with diode laser radiation. Especially in the visible spectral range between 480 nm and 630 nm no emission from diode lasers is available, yet. Nonlinear frequency conversion of near-infrared radiation is a common way to generate coherent emission in the visible spectral range. However, radiation with extraordinary spatial temporal and spectral quality is required to pump frequency conversion. Broad area (BA) diode lasers are reliable high power light sources in the near-infrared spectral range. They belong to the most efficient coherent light sources with electro-optical efficiencies of more than 70%. Standard BA lasers are not suitable as pump lasers for frequency conversion because of their poor beam quality and spectral properties. For this purpose, tapered lasers and diode lasers with Bragg gratings are utilized. However, these new diode laser structures demand for additional manufacturing and assembling steps that makes their processing challenging and expensive. An alternative to BA diode lasers is the stripe-array architecture. The emitting area of a stripe-array diode laser is comparable to a BA device and the manufacturing of these arrays requires only one additional process step. Such a stripe-array consists of several narrow striped emitters realized with close proximity. Due to the overlap of the fields of neighboring emitters or the presence of leaky waves, a strong coupling between the emitters exists. As a consequence, the emission of such an array is characterized by a so called supermode. However, for the free running stripe-array mode competition between several supermodes occurs because of the lack of wavelength stabilization. This leads to power fluctuations, spectral instabilities and poor beam quality. Thus, it was necessary to study the emission properties of those stripe-arrays to find new concepts to realize an external synchronization of the emitters. The aim was to achieve stable longitudinal and transversal single mode operation with high output powers giving a brightness sufficient for efficient nonlinear frequency conversion. For this purpose a comprehensive analysis of the stripe-array devices was done here. The physical effects that are the origin of the emission characteristics were investigated theoretically and experimentally. In this context numerical models could be verified and extended. A good agreement between simulation and experiment was observed. One way to stabilize a specific supermode of an array is to operate it in an external cavity. Based on mathematical simulations and experimental work, it was possible to design novel external cavities to select a specific supermode and stabilize all emitters of the array at the same wavelength. This resulted in stable emission with 1 W output power, a narrow bandwidth in the range of 2 MHz and a very good beam quality with M²<1.5. This is a new level of brightness and brilliance compared to other BA and stripe-array diode laser systems. The emission from this external cavity diode laser (ECDL) satisfied the requirements for nonlinear frequency conversion. Furthermore, a huge improvement to existing concepts was made. In the next step newly available periodically poled crystals were used for second harmonic generation (SHG) in single pass setups. With the stripe-array ECDL as pump source, more than 140 mW of coherent radiation at 488 nm could be generated with a very high opto-optical conversion efficiency. The generated blue light had very good transversal and longitudinal properties and could be used to generate biphotons by parametric down-conversion. This was feasible because of the improvement made with the infrared stripe-array diode lasers due to the development of new physical concepts.
This handbook brings together in a single volume expert contributions on the many aspects of MO data recording, including the materials in use, techniques for achieving recording function, and storage device subsystems. As a multiple author treatment, it brings perspective from many viewpoints and institutions. The insights delivered should be valuable to a wide audience from students to practitioners in all areas of information storage.