Download Free Comonads And Gorenstein Homological Algebra Book in PDF and EPUB Free Download. You can read online Comonads And Gorenstein Homological Algebra and write the review.

Gorenstein homological algebra is an important area of mathematics, with applications in commutative and noncommutative algebra, model category theory, representation theory, and algebraic geometry. While in classical homological algebra the existence of the projective, injective, and flat resolutions over arbitrary rings are well known, things are a little different when it comes to Gorenstein homological algebra. The main open problems in this area deal with the existence of the Gorenstein injective, Gorenstein projective, and Gorenstein flat resolutions. Gorenstein Homological Algebra is especially suitable for graduate students interested in homological algebra and its applications.
This is the second revised edition of an introduction to contemporary relative homological algebra. It supplies important material essential to understand topics in algebra, algebraic geometry and algebraic topology. Each section comes with exercises providing practice problems for students as well as additional important results for specialists. In this new edition the authors have added well-known additional material in the first three chapters, and added new material that was not available at the time the original edition was published. In particular, the major changes are the following: Chapter 1: Section 1.2 has been rewritten to clarify basic notions for the beginner, and this has necessitated a new Section 1.3. Chapter 3: The classic work of D. G. Northcott on injective envelopes and inverse polynomials is finally included. This provides additional examples for the reader. Chapter 11: Section 11.9 on Kaplansky classes makes volume one more up to date. The material in this section was not available at the time the first edition was published. The authors also have clarified some text throughout the book and updated the bibliography by adding new references. The book is also suitable for an introductory course in commutative and ordinary homological algebra.
This book develops the machinery of homological algebra and its applications to commutative rings and modules. It assumes familiarity with basic commutative algebra, for example, as covered in the author's book, Commutative Algebra. The first part of the book is an elementary but thorough exposition of the concepts of homological algebra, starting from categorical language up to the construction of derived functors and spectral sequences. A full proof of the celebrated Freyd-Mitchell theorem on the embeddings of small Abelian categories is included. The second part of the book is devoted to the application of these techniques in commutative algebra through the study of projective, injective, and flat modules, the construction of explicit resolutions via the Koszul complex, and the properties of regular sequences. The theory is then used to understand the properties of regular rings, Cohen-Macaulay rings and modules, Gorenstein rings and complete intersections. Overall, this book is a valuable resource for anyone interested in learning about homological algebra and its applications in commutative algebra. The clear and thorough presentation of the material, along with the many examples and exercises of varying difficulty, make it an excellent choice for self-study or as a reference for researchers.
When this book was written, methods of algebraic topology had caused revolutions in the world of pure algebra. To clarify the advances that had been made, Cartan and Eilenberg tried to unify the fields and to construct the framework of a fully fledged theory. The invasion of algebra had occurred on three fronts through the construction of cohomology theories for groups, Lie algebras, and associative algebras. This book presents a single homology (and also cohomology) theory that embodies all three; a large number of results is thus established in a general framework. Subsequently, each of the three theories is singled out by a suitable specialization, and its specific properties are studied. The starting point is the notion of a module over a ring. The primary operations are the tensor product of two modules and the groups of all homomorphisms of one module into another. From these, "higher order" derived of operations are obtained, which enjoy all the properties usually attributed to homology theories. This leads in a natural way to the study of "functors" and of their "derived functors." This mathematical masterpiece will appeal to all mathematicians working in algebraic topology.
From the reviews: "The book is well written. We find here many examples. Each chapter is followed by exercises, and at the end of the book there are outline solutions to some of them. [...] I especially appreciated the lively style of the book; [...] one is quickly able to find necessary details." EMS Newsletter
This modern approach to homological algebra by two leading writers in the field is based on the systematic use of the language and ideas of derived categories and derived functors. It describes relations with standard cohomology theory and provides complete proofs. Coverage also presents basic concepts and results of homotopical algebra. This second edition contains numerous corrections.
This book proposes a study of semi-exact homological categories as a basis for a generalized homological algebra. The aim is to extend homological notions to deeply non-abelian situations, where satellites and spectral sequences produced by unstable homotopy can still be studied.
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.