Download Free Communication Networking Book in PDF and EPUB Free Download. You can read online Communication Networking and write the review.

Computer and Communication Networks, Second Edition first establishes a solid foundation in basic networking concepts, TCP/IP schemes, wireless networking, Internet applications, and network security. Next, Mir delves into the mathematical analysis of networks, as well as advanced networking protocols. This fully-updated text thoroughly explains the modern technologies of networking and communications among computers, servers, routers, and other smart communication devices, helping readers design cost-effective networks that meet emerging requirements. Offering uniquely balanced coverage of all key basic and advanced topics, it teaches through extensive, up-to-date case studies, 400 examples and exercises, and 250+ illustrative figures. Nader F. Mir provides the practical, scenario-based information many networking books lack, and offers a uniquely effective blend of theory and implementation. Drawing on extensive experience in the field, he introduces a wide spectrum of contemporary applications, and covers several key topics that competitive texts skim past or ignore completely, such as Software-Defined Networking (SDN) and Information-Centric Networking.
Annotation As one of the fastest growing technologies in our culture today, data communications and networking presents a unique challenge for instructors. As both the number and types of students are increasing, it is essential to have a textbook that provides coverage of the latest advances, while presenting the material in a way that is accessible to students with little or no background in the field. Using a bottom-up approach, Data Communications and Networking presents this highly technical subject matter without relying on complex formulas by using a strong pedagogical approach supported by more than 700 figures. Now in its Fourth Edition, this textbook brings the beginning student right to the forefront of the latest advances in the field, while presenting the fundamentals in a clear, straightforward manner. Students will find better coverage, improved figures and better explanations on cutting-edge material. The "bottom-up" approach allows instructors to cover the material in one course, rather than having separate courses on data communications and networking
Communication Networking is a comprehensive, effectively organized introduction to the realities of communication network engineering. Written for both the workplace and the classroom, this book lays the foundation and provides the answers required for building an efficient, state-of-the-art network—one that can expand to meet growing demand and evolve to capitalize on coming technological advances. It focuses on the three building blocks out of which a communication network is constructed: multiplexing, switching, and routing. The discussions are based on the viewpoint that communication networking is about efficient resource sharing. The progression is natural: the book begins with individual physical links and proceeds to their combination in a network. The approach is analytical: discussion is driven by mathematical analyses of and solutions to specific engineering problems. Fundamental concepts are explained in detail and design issues are placed in context through real world examples from current technologies. The text offers in-depth coverage of many current topics, including network calculus with deterministically-constrained traffic; congestion control for elastic traffic; packet switch queuing; switching architectures; virtual path routing; and routing for quality of service. It also includes more than 200 hands-on exercises and class-tested problems, dozens of schematic figures, a review of key mathematical concepts, and a glossary. This book will be of interest to networking professionals whose work is primarily architecture definition and implementation, i.e., network engineers and designers at telecom companies, industrial research labs, etc. It will also appeal to final year undergrad and first year graduate students in EE, CE, and CS programs. - Systematically uses mathematical models and analyses to drive the development of a practical understanding of core network engineering problems. - Provides in-depth coverage of many current topics, including network calculus with deterministically-constrained traffic, congestion control for elastic traffic, packet switch queuing, switching architectures, virtual path routing, and routing for quality of service. - Includes over 200 hands-on exercises and class-tested problems, dozens of schematic figures, a review of key mathematical concepts, and a glossary.
. This book is designed for introductory one-semester or one-year courses in communications networks in upper-level undergraduate programs. The second half of the book can be used in more advanced courses. As pre-requisites the book assumes a general knowledge of computer systems and programming, and elementary calculus. The second edition expands on the success of the first edition by updating on technological changes in networks and responding to comprehensive market feedback..
Retaining the first edition's technology-centred perspective, this book gives readers a sound understanding of packed-switched, circuit-switched and ATM networks, and techniques for controlling them.
This book presents an application-centric approach to the development of smart grid communication architecture. The coverage includes in-depth reviews of such cutting-edge applications as advanced metering infrastructure, distribution automation, demand response and synchrophasors. Features: examines a range of exciting utility applications made possible through smart grid evolution; describes the core-edge network architecture for smart grids, introducing the concept of WANs and FANs; explains how the network design paradigm for smart grids differs from that for more established data networks, and discusses network security in smart grids; provides an overview of communication network technologies for WANs and FANs, covering OPGW, PLC, and LTE and MPLS technology; investigates secure data-centric data management and data analytics for smart grids; discusses the transformation of a network from conventional modes of utility operation to an integrated network based on the smart grid architecture framework.
What every electrical engineering student and technical professional needs to know about data exchange across networks While most electrical engineering students learn how the individual components that make up data communication technologies work, they rarely learn how the parts work together in complete data communication networks. In part, this is due to the fact that until now there have been no texts on data communication networking written for undergraduate electrical engineering students. Based on the author’s years of classroom experience, Fundamentals of Data Communication Networks fills that gap in the pedagogical literature, providing readers with a much-needed overview of all relevant aspects of data communication networking, addressed from the perspective of the various technologies involved. The demand for information exchange in networks continues to grow at a staggering rate, and that demand will continue to mount exponentially as the number of interconnected IoT-enabled devices grows to an expected twenty-six billion by the year 2020. Never has it been more urgent for engineering students to understand the fundamental science and technology behind data communication, and this book, the first of its kind, gives them that understanding. To achieve this goal, the book: Combines signal theory, data protocols, and wireless networking concepts into one text Explores the full range of issues that affect common processes such as media downloads and online games Addresses services for the network layer, the transport layer, and the application layer Investigates multiple access schemes and local area networks with coverage of services for the physical layer and the data link layer Describes mobile communication networks and critical issues in network security Includes problem sets in each chapter to test and fine-tune readers’ understanding Fundamentals of Data Communication Networks is a must-read for advanced undergraduates and graduate students in electrical and computer engineering. It is also a valuable working resource for researchers, electrical engineers, and technical professionals.
Computing in Communication Networks: From Theory to Practice provides comprehensive details and practical implementation tactics on the novel concepts and enabling technologies at the core of the paradigm shift from store and forward (dumb) to compute and forward (intelligent) in future communication networks and systems. The book explains how to create virtualized large scale testbeds using well-established open source software, such as Mininet and Docker. It shows how and where to place disruptive techniques, such as machine learning, compressed sensing, or network coding in a newly built testbed. In addition, it presents a comprehensive overview of current standardization activities. Specific chapters explore upcoming communication networks that support verticals in transportation, industry, construction, agriculture, health care and energy grids, underlying concepts, such as network slicing and mobile edge cloud, enabling technologies, such as SDN/NFV/ ICN, disruptive innovations, such as network coding, compressed sensing and machine learning, how to build a virtualized network infrastructure testbed on one's own computer, and more. - Provides a uniquely comprehensive overview on the individual building blocks that comprise the concept of computing in future networks - Gives practical hands-on activities to bridge theory and implementation - Includes software and examples that are not only employed throughout the book, but also hosted on a dedicated website
Analysis of Computer and Communication Networks provides the basic techniques for modeling and analyzing two of the fundamental components of high performance networks: switching equipment, and software employed at the end nodes and intermediate switches. The book also reviews the design options used to build efficient switching equipment. Topics covered include Markov chains and queuing analysis, traffic modeling, interconnection networks, and switch architectures and buffering strategies. This book covers the mathematical theory and techniques necessary for analyzing telecommunication systems. Queuing and Markov chain analyses are provided for many protocols currently in use. The book then discusses in detail applications of Markov chains and queuing analysis to model more than 15 communications protocols and hardware components.