Download Free Commercial Off The Shelf Airborne Electronic Hardware Issues And Emerging Solutions Book in PDF and EPUB Free Download. You can read online Commercial Off The Shelf Airborne Electronic Hardware Issues And Emerging Solutions and write the review.

This report, based on global industry and regulatory expert experience and knowledge, illustrates only the top level of elemental aspects regarding commercial off-the-shelf (COTS) components embedded in airborne electronic hardware (AEH) issues and provides possibilities for COTS AEH solutions development including: 1) the use of existing standards and guidance documents as a structure for future evolution of COTS standards, 2) possible future COTS standards to implement this structure, 3) the need for combined industry/regulatory/manufacturing research to develop COTS AEH issues mitigations, including the development of COTS standards and guidance, 4) mechanisms to shorten the slow evolution of standards, 5) a candidate structure for relevant and emerging COTS standards linked to evolving development assurance standards, and 6) the identification of standard bodies responsible for the implementation of the ongoing COTS solution(s). This report provides a COTS AEH assurance framework, including a common structured approach to evaluate COTS AEH issues. This approach is applied to the 22 issues addressed in the report and is recommended for application to future issues not addressed herein. The approach is presented in a manner that supports development of project-level COTS AEH mitigations that can be rolled into development, design assurance, and a practical compliance solution for FAA engineers, delegates, and standards administrators. There is a stand-alone treatment of each issue and a five-step suggested evolution of COTS and development assurance standards and guidelines. The research (1) includes detailed technical information about the issues, (2) introduces research required to provide new knowledge needed to implement solutions for the COTS AEH issues, (3) explores required tools, standards, and guidance needed for COTS-based systems development assurance, certification, and maintenance, and (4) considers certification-process and assessment criteria as well as methods for the given issues. The approach may be used to evaluate and develop emerging COTS AEH issues. This report also addresses design, component selection, development assurance, and certification-process issues for AEH COTS electronics product items, such as hybrids, multichip modules, microprocessors, field-programmable gate arrays, application-specific integrated circuits, and small assemblies including printed wiring assemblies and disk drives. All organizations and individuals who work with COTS AEH in avionics are encouraged to read and understand this report --and those who address these COTS AEH issues should use the AFE 75 research approach and results described.
This book constitutes the refereed proceedings of the 37th International Conference on Computer Safety, Reliability, and Security, SAFECOMP 2018, held in Västerås, Sweden, in September 2018. The 19 revised full papers and 1 short paper presented together with three abstracts of keynotes were carefully reviewed and selected from 63 submissions. The papers are organized in topical sections on Automotive Safety Standards and Cross-domain Reuse Potential; Autonomous Driving and Safety Analysis; Verification; Multi-concern Assurance; Fault Tolerance; and Safety and Security Risk.
This report deals with the issue of using commodity memories in avionics, explains the reasons for the concern, and investigates methods used to ensure the reliability of the data stored in commodity memories. Because of the competitive nature regarding the efforts by manufacturers to produce devices that have vast numbers (i.e., millions and possibly billions) of these memories, their quality can be suspect, and their reliability and availability are likely to be less robust. Four types of commodity memories are covered in this report: double data rate, not-AND flash, toggle magnetoresistive, and quad data rate. This report provides a brief description of the technologies, manufacturing aspects, and defect management of these memories. Confidence in commodity memories is built not only from matching their type to the domain usage in the design phase but also by actively engaging with the commodity manufacturer and distributor. For the selected commodity memories, failure modes and failure mechanisms are discussed to illustrate the concern. Failure modes in commodity memories are described by using both a black-box and a grey-box model view and applying three levels of abstraction: functional, logical, and physical. Ensuring the reliability of these commodity memories is investigated through the existing fault mitigation techniques embedded in these memories and the identification of additional internal or external fault mitigation techniques. Error correcting codes are the typical built-in mitigation technique for each of the selected commodity memory types. Issues with built-in mitigation techniques typically point to a lack of documentation or poor coverage of the Airborne Electronic Hardware usage domain. Finally, the report presents a series of recommendations to support assurance of commodity memories in avionics products.
Written by a Federal Aviation Administration (FAA) consultant designated engineering representative (DER) and an electronics hardware design engineer who together taught the DO-254 class at the Radio Technical Commission for Aeronautics, Inc. (RTCA) in Washington, District of Columbia, USA, Airborne Electronic Hardware Design Assurance: A Practitioner's Guide to RTCA/DO-254 is a testimony to the lessons learned and wisdom gained from many years of first-hand experience in the design, verification, and approval of airborne electronic hardware. This practical guide to the use of RTCA/DO-254 in the development of airborne electronic hardware for safety critical airborne applications: Describes how to optimize engineering processes and practices to harmonize with DO-254 Addresses the single most problematic aspect of engineering and compliance to DO-254—poorly written requirements Includes a tutorial on how to write requirements that will minimize the cost and effort of electronic design and verification Discusses the common pitfalls encountered by practitioners of DO-254, along with how those pitfalls occur and what can be done about them Settles the ongoing debate and misconceptions about the true definition of a derived requirement Promotes embracing DO-254 as the best means to achieve compliance to it, as well as the best path to high-quality electronic hardware Airborne Electronic Hardware Design Assurance: A Practitioner's Guide to RTCA/DO-254 offers real-world insight into RTCA/DO-254 and how its objectives can be satisfied. It provides engineers with valuable information that can be applied to any project to make compliance to DO-254 as easy and problem-free as possible.
Over the past 40 years, neurobiology and computational neuroscience has proved that deeper understanding of visual processes in humans and non-human primates can lead to important advancements in computational perception theories and systems. One of the main difficulties that arises when designing automatic vision systems is developing a mechanism that can recognize - or simply find - an object when faced with all the possible variations that may occur in a natural scene, with the ease of the primate visual system. The area of the brain in primates that is dedicated at analyzing visual information is the visual cortex. The visual cortex performs a wide variety of complex tasks by means of simple operations. These seemingly simple operations are applied to several layers of neurons organized into a hierarchy, the layers representing increasingly complex, abstract intermediate processing stages. In this Research Topic we propose to bring together current efforts in neurophysiology and computer vision in order 1) To understand how the visual cortex encodes an object from a starting point where neurons respond to lines, bars or edges to the representation of an object at the top of the hierarchy that is invariant to illumination, size, location, viewpoint, rotation and robust to occlusions and clutter; and 2) How the design of automatic vision systems benefit from that knowledge to get closer to human accuracy, efficiency and robustness to variations.
This is a self-contained book on the foundations and applications of optical and microwave technologies to telecommunication networks application, with an emphasis on access, local, road, cars, trains, vessels and airplanes, indoor and in-car data transmission as well as for long-distance fiber-systems and application in outer space and automation technology. The book provides a systematic discussion of physics/optics, electromagnetic wave theory, optical fibre technology, and the potential and limitations of optical and microwave transmission.