Download Free Comments On Nuclear Physics For Gamma Ray Lasers Book in PDF and EPUB Free Download. You can read online Comments On Nuclear Physics For Gamma Ray Lasers and write the review.

Estimates are presented of the probability of finding a closely spaced pair of levels, one member of which is an isomer, in the rare earth and actinide nuclei. A discussion of the typical electromagnetic transition strengths expected between such pairs is given. Present and future experimental techniques are described, including the possible development of particle detectors with greatly improved resolution. 17 refs., 1 tab.
Provides a definitive overview of the current status of gamma-ray lasers including contributions from scientists pursuing active research in areas relevant to the graser problem. Describes a range of programmes which deal with selecting candidate nuclei, procuring the right lasing medium and forming it into an acicular geometry, working in an energy regime that enables utilizing the Mossbauer Effect, using the Campbell-Borrmann Effect to decrease electronic absorption, designing basic experiments that demonstrate critical steps necessary to produce a graser, and clarifying a number of theoretical problems specific to the nuclear laser.
Nuclear nonproliferation is a critical global issue. A key technological challenge to ensuring nuclear nonproliferation and security is the detection of long-lived radioisotopes and fissionable nuclides in a non-destructive manner. This technological challenge requires new methods for detecting relevant nuclides and the development of new quantum-beam sources. For example, one new method that has been proposed and studied is nuclear resonance fluorescence with energy-tunable, monochromatic gamma-rays generated by Compton scattering of laser photons with electrons.The development of new methods requires the help of researchers from a wide range of fields, such as nuclear physics, accelerator physics, laser physics, etc. Furthermore, any new method must be compatible with the requirements of administrators and nuclear-material inspectors.
A renaissance in nuclear physics is occurring around the world because of a new kind of incredibly bright, gamma-ray light source that can be created with short pulse lasers and energetic electron beams. These highly Mono-Energetic Gamma-ray (MEGa-ray) sources produce narrow, laser-like beams of incoherent, tunable gamma-rays and are enabling access and manipulation of the nucleus of the atom with photons or so called 'Nuclear Photonics'. Just as in the early days of the laser when photon manipulation of the valence electron structure of the atom became possible and enabling to new applications and science, nuclear photonics with laser-based gamma-ray sources promises both to open up wide areas of practical isotope-related, materials applications and to enable new discovery-class nuclear science. In the United States, the development of high brightness and high flux MEGa-ray sources is being actively pursued at the Lawrence Livermore National Laboratory in Livermore (LLNL), California near San Francisco. The LLNL work aims to create by 2013 a machine that will advance the state of the art with respect to source the peak brightness by 6 orders of magnitude. This machine will create beams of 1 to 2.3 MeV photons with color purity matching that of common lasers. In Europe a similar but higher photon energy gamma source has been included as part of the core capability that will be established at the Extreme Light Infrastructure Nuclear Physics (ELI-NP) facility in Magurele, Romania outside of Bucharest. This machine is expected to have an end point gamma energy in the range of 13 MeV. The machine will be co-located with two world-class, 10 Petawatt laser systems thus allowing combined intense-laser and gamma-ray interaction experiments. Such capability will be unique in the world. In this talk, Dr. Chris Barty from LLNL will review the state of the art with respect to MEGa-ray source design, construction and experiments and will describe both the ongoing projects around the world as well some of the exciting applications that these machines will enable. The optimized interaction of short-duration, pulsed lasers with relativistic electron beams (inverse laser-Compton scattering) is the key to unrivaled MeV-scale photon source monochromaticity, pulse brightness and flux. In the MeV spectral range, such Mono-Energetic Gamma-ray (MEGa-ray) sources can have many orders of magnitude higher peak brilliance than even the world's largest synchrotrons. They can efficiently perturb and excite the isotope-specific resonant structure of the nucleus in a manner similar to resonant laser excitation of the valence electron structure of the atom.
Presented are initial results in our investigation of the nuclear physics issues of gamma-ray lasers. These include the questions of what is known from existing experimental data, where does one optimally search for nuclei displaying simultaneously both closely lying levels and nuclear isomerism, and which theoretical models does one employ for systematic searches for candidate nuclei and for calculation of detailed candidate level properties.
This book focuses on Nuclear-Pumped Laser (NPL) technology and provides the reader with a fundamental understanding of NPLs, a review of research in the field and exploration of large scale NPL system design and applications. Early chapters look at the fundamental properties of lasers, nuclear-pumping and nuclear reactions that may be used as drivers for nuclear-pumped lasers. The book goes on to explore the efficient transport of energy from the ionizing radiation to the laser medium and then the operational characteristics of existing nuclear-pumped lasers. Models based on Mathematica, explanations and a tutorial all assist the reader’s understanding of this technology. Later chapters consider the integration of the various systems involved in NPLs and the ways in which they can be used, including beyond the military agenda. As readers will discover, there are significant humanitarian applications for high energy/power lasers, such as deflecting asteroids, space propulsion, power transmission and mining. This book will appeal to graduate students and scholars across diverse disciplines, including nuclear engineering, laser physics, quantum electronics, gaseous electronics, optics, photonics, space systems engineering, materials, thermodynamics, chemistry and physics.
We summarize some initial results in our investigation of the nuclear physics issues of gamma-ray lasers. We describe what is known thus far from existing experimental data and illustrate how theoretical models may be employed for systematic searches of candidate nuclei.
Nuclear nonproliferation is a critical global issue. A key technological challenge to ensuring nuclear nonproliferation and security is the detection of long-lived radioisotopes and fissionable nuclides in a non-destructive manner. This technological challenge requires new methods for detecting relevant nuclides and the development of new quantum-beam sources. For example, one new method that has been proposed and studied is nuclear resonance fluorescence with energy-tunable, monochromatic gamma-rays generated by Compton scattering of laser photons with electrons. The development of new methods requires the help of researchers from a wide range of fields, such as nuclear physics, accelerator physics, laser physics, etc. Furthermore, any new method must be compatible with the requirements of administrators and nuclear-material inspectors.
This comprehensive book presents at a theoretical level the main aspects of high-power lasers interacting with nuclei at a broad range of intensities for scientists and students involved in this new and challenging area of research. It presents theoretical techniques, some borrowed from atomic physics, and applications related to important chapters of nuclear physics. This book provides an overview of the field's state-of-the-art and an introduction to the classical and quantum foundations of the interaction of a particle or a system of particles with the electromagnetic field. Topics such as particle emission of nuclei, collective dipole modes induced by strong laser beams and laser-assisted heavy-ion scattering are discussed.