Download Free Colorado Math Book in PDF and EPUB Free Download. You can read online Colorado Math and write the review.

Each teacher and student brings many identities to the classroom. What is their impact on the student’s learning and the teacher’s teaching of mathematics? This book invites K–8 teachers to reflect on their own and their students’ multiple identities. Rich possibilities for learning result when teachers draw on these identities to offer high-quality, equity-based teaching to all students. Reflecting on identity and re-envisioning learning and teaching through this lens especially benefits students who have been marginalized by race, class, ethnicity, or gender. The authors encourage teachers to reframe instruction by using five equity-based mathematics teaching practices: Going deep with mathematics; leveraging multiple mathematical competencies; affirming mathematics learners’ identities; challenging spaces of marginality; and drawing on multiple resources of knowledge. Special features of the book: Classroom vignettes, lessons, and assessments showing equity-based practices Tools for teachers’ self-reflection and professional development, including a mathematics learning autobiography and teacher identity activity at nctm.org/more4u Suggestions for partnering with parents and community organisations End-of-chapter discussion questions
STEM Road Map: A Framework for Integrated STEM Education is the first resource to offer an integrated STEM curricula encompassing the entire K-12 spectrum, with complete grade-level learning based on a spiraled approach to building conceptual understanding. A team of over thirty STEM education professionals from across the U.S. collaborated on the important work of mapping out the Common Core standards in mathematics and English/language arts, the Next Generation Science Standards performance expectations, and the Framework for 21st Century Learning into a coordinated, integrated, STEM education curriculum map. The book is structured in three main parts—Conceptualizing STEM, STEM Curriculum Maps, and Building Capacity for STEM—designed to build common understandings of integrated STEM, provide rich curriculum maps for implementing integrated STEM at the classroom level, and supports to enable systemic transformation to an integrated STEM approach. The STEM Road Map places the power into educators’ hands to implement integrated STEM learning within their classrooms without the need for extensive resources, making it a reality for all students.
This updated printing of the first edition of Colorado Mathematical Olympiad: the First Twenty Years and Further Explorations gives the interesting history of the competition as well as an outline of all the problems and solutions that have been created for the contest over the years. Many of the essay problems were inspired by Russian mathematical folklore and written to suit the young audience; for example, the 1989 Sugar problem was written in a pleasant Lewis Carroll-like story. Some other entertaining problems involve olde Victorian map colourings, King Authur and the knights of the round table, rooks in space, Santa Claus and his elves painting planes, football for 23, and even the Colorado Springs subway system.
Children will delight in the 140 activities that bring math to life in the classroom. This collection is organized by curriculum area, making it easy for teachers to integrate the activities into their daily plans. Teachers/parents.
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
Aimed at undergraduate mathematics and computer science students, this book is an excellent introduction to a lot of problems of discrete mathematics. It discusses a number of selected results and methods, mostly from areas of combinatorics and graph theory, and it uses proofs and problem solving to help students understand the solutions to problems. Numerous examples, figures, and exercises are spread throughout the book.
The purpose of this handbook is to help launch institutional transformations in mathematics departments to improve student success. We report findings from the Student Engagement in Mathematics through an Institutional Network for Active Learning (SEMINAL) study. SEMINAL's purpose is to help change agents, those looking to (or currently attempting to) enact change within mathematics departments and beyond—trying to reform the instruction of their lower division mathematics courses in order to promote high achievement for all students. SEMINAL specifically studies the change mechanisms that allow postsecondary institutions to incorporate and sustain active learning in Precalculus to Calculus 2 learning environments. Out of the approximately 2.5 million students enrolled in collegiate mathematics courses each year, over 90% are enrolled in Precalculus to Calculus 2 courses. Forty-four percent of mathematics departments think active learning mathematics strategies are important for Precalculus to Calculus 2 courses, but only 15 percnt state that they are very successful at implementing them. Therefore, insights into the following research question will help with institutional transformations: What conditions, strategies, interventions and actions at the departmental and classroom levels contribute to the initiation, implementation, and institutional sustainability of active learning in the undergraduate calculus sequence (Precalculus to Calculus 2) across varied institutions?
Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.