Download Free Colloquium Lectures In Pure And Applied Science Book in PDF and EPUB Free Download. You can read online Colloquium Lectures In Pure And Applied Science and write the review.

Random evolution denotes a class of stochastic processes which evolve according to a rule which varies in time according to jumps. This is in contrast to diffusion processes, which assume that the rule changes continuously with time. Random evolutions provide a very flexible language, having the advantage that they permit direct numerical simulation-which is not possible for a diffusion process. Furthermore, they allow connections with hyperbolic partial differential equations and the kinetic theory of gases, which is impossible within the domain of diffusion proceses. They also posses great geometric invariance, allowing formulation on an arbitrary Riemannian manifold. In the field of stochastic stability, random evolutions furnish some easily computable models in which to study the Lyapunov exponent and rotation numbers of oscillators under the influence of noise. This monograph presents the various aspects of random evolution in an accessible and interesting format which will appeal to a large scientific audience.
Proceedings of the International Conference on Functional Analysis and Its Application in Honor of Professor Tosio Kato, July 3-6, 1989, University of Tokyo, and the Symposium on Spectral and Scattering Theory, held July 7, 1989, at Gakushin University, Tokyo.
This proceedings volume reflects the current interest — especially of researchers in the Asia-Pacific region — in probability theory and related theory of analysis and statistics. It contains the papers of the two survey speakers, and of some other speakers and researchers. It brings out the theme of SAP, an international meeting on some aspects of probability, analysis and their interplay.
This book presents a clear exposition of the approaches to the problem of uncertain inference.
This book is designed as an introduction into what I call 'abstract' Topological Dynamics (TO): the study of topological transformation groups with respect to problems that can be traced back to the qualitative theory of differential equa is in the tradition of the books [GH] and [EW. The title tions. So this book (,Elements . . . ' rather than 'Introduction . . . ') does not mean that this book should be compared, either in scope or in (intended) impact, with the 'Ele ments' of Euclid or Bourbaki. Instead, it reflects the choice and organisation of the material in this book: elementary and basic (but sufficient to understand recent research papers in this field). There are still many challenging prob lems waiting for a solution, and especially among general topologists there is a growing interest in this direction. However, the technical inaccessability of many research papers makes it almost impossible for an outsider to under stand what is going on. To a large extent, this inaccessability is caused by the lack of a good and systematic exposition of the fundamental methods and techniques of abstract TO. This book is an attempt to fill this gap. The guiding principle for the organization of the material in this book has been the exposition of methods and techniques rather than a discussion of the leading problems and their solutions. though the latter are certainly not neglected: they are used as a motivation wherever possible.
This book provides an extensive, systematic overview of the modern theory of telegraph processes and their multidimensional counterparts, together with numerous fruitful applications in financial modelling. Focusing on stochastic processes of bounded variation instead of classical diffusion, or more generally, Lévy processes, has two obvious benefits. First, the mathematical technique is much simpler, which helps to concentrate on the key problems of stochastic analysis and applications, including financial market modelling. Second, this approach overcomes some shortcomings of the (parabolic) nature of classical diffusions that contradict physical intuition, such as infinite propagation velocity and infinite total variation of paths. In this second edition, some sections of the previous text are included without any changes, while most others have been expanded and significantly revised. These are supplemented by predominantly new results concerning piecewise linear processes with arbitrary sequences of velocities, jump amplitudes, and switching intensities. The chapter on functionals of the telegraph process has been significantly expanded by adding sections on exponential functionals, telegraph meanders and running extrema, the times of the first passages of telegraph processes with alternating random jumps, and distribution of the Euclidean distance between two independent telegraph processes. A new chapter on the multidimensional counterparts of the telegraph processes is also included. The book is intended for graduate students in mathematics, probability, statistics and quantitative finance, and for researchers working at academic institutions, in industry and engineering. It can also be used by university lecturers and professionals in various applied areas.
The program of the Institute covered several aspects of functional integration -from a robust mathematical foundation to many applications, heuristic and rigorous, in mathematics, physics, and chemistry. It included analytic and numerical computational techniques. One of the goals was to encourage cross-fertilization between these various aspects and disciplines. The first week was focused on quantum and classical systems with a finite number of degrees of freedom; the second week on field theories. During the first week the basic course, given by P. Cartier, was a presentation of a recent rigorous approach to functional integration which does not resort to discretization, nor to analytic continuation. It provides a definition of functional integrals simpler and more powerful than the original ones. Could this approach accommodate the works presented by the other lecturers? Although much remains to be done before answering "Yes," there seems to be no major obstacle along the road. The other courses taught during the first week presented: a) a solid introduction to functional numerical techniques (A. Sokal) and their applications to functional integrals encountered in chemistry (N. Makri). b) integrals based on Poisson processes and their applications to wave propagation (S. K. Foong), in particular a wave-restorer or wave-designer algorithm yielding the initial wave profile when one can only observe its distortion through a dissipative medium. c) the formulation of a quantum equivalence principle (H. Kleinert) which. given the flat space theory, yields a well-defined quantum theory in spaces with curvature and torsion.