Download Free Colloidal Synthesis Of Plasmonic Nanometals Book in PDF and EPUB Free Download. You can read online Colloidal Synthesis Of Plasmonic Nanometals and write the review.

Noble metal nanoparticles have attracted enormous scientific and technological interest because of their unique optical properties, which are related to surface plasmon resonances. The interest in nanosized metal particles dates back to ancient societies, when metals were used in various forms as decorative elements. From the famous Lycurgus cup, made by the Romans in the 4th century AD, through thousands of stained glasses in churches and cathedrals all over medieval Europe, bright-yellow, green, or red colors have been obtained by a touch of metallic additions during glass blowing. This peculiar interaction of light with nanometals can be widely tuned through the morphology and assembly of nanoparticles, thereby expanding the range of potential applications, from energy and information storage to biomedicine, including novel diagnostic and therapeutic methods. This book compiles recent developments that clearly illustrate the state of the art in this cutting-edge research field. It comprises different review articles written by the teams of Prof. Luis Liz-Marzán, an international leader in chemical nanotechnology who has made seminal contributions to the use of colloid chemistry methods to understand and tailor the growth of metal particles at the nanoscale. Apart from synthesis, the book also describes in detail the plasmonic properties of nanomaterials and illustrates some representative applications. This book will appeal to anyone involved in nanotechnology, nanocrystal growth, nanoplasmonics, and surface-enhanced spectroscopies.
Nano-Engineering at Functional Interfaces for Multi-disciplinary Applications: Electrochemistry, Photoplasmonics, Antimicrobials, and Anticancer Applications provides a comprehensive overview of the fundamentals and latest advances of nano-engineering strategies for the design, development, and fabrication of novel nanostructures for different applications in the fields of photoplasmonics and electrochemistry, as well as antibacterial and anticancer research areas. The book begins with an introduction to the fundamentals and characteristics of nanostructured interfaces and their associated technologies, including an overview of their potential applications in different fields. The following chapters present a thorough discussion of the synthesis, processing, and characterization methods of nanomaterials with unique functionalities suitable for energy harvesting, food and textile applications, electrocatalysis, biomedical applications and more. It then concludes outlining research future directions and potential industrial applications. - Presents the advantages and impact of nano-engineering in technological advances, with up-to-date discussions on their applications - Covers research directions and potential future applications of nano-engineering in industry - Includes case studies that illustrate important processes
This book comprehensively explores the field of plasmonic nanomaterials and their significant impact on organic synthesis and catalysis. It provides an in-depth understanding of the characterization techniques used for studying these unique materials. It emphasizes the role of plasmonic nanomaterials as efficient catalysts in organic synthesis, showcasing their ability to enhance reaction rates and selectivity. It covers a wide range of organic reactions, including carbon–carbon and carbon–heteroatom bond formation, oxidation, reduction, and so on. It presents detailed case studies and examples that illustrate the successful application of plasmonic nanomaterials in these catalytic processes. The book is a valuable resource for researchers, students, and professionals interested in the synthesis, characterization, and applications of plasmonic nanomaterials in organic chemistry and catalysis.
Biological and chemical warfare agents, including viruses, bacteria, and explosive and radioactive compounds, can induce illness or death in humans, animals, and plants. Plasmonic nanosensors as detection tools of these agents offer significant advantages, including rapid detection, sensitivity, selectivity, and portability. This book explores novel and updated research on different types of plasmonic nanosensors for analysis of biological and chemical threat agents. It covers a brief theory of plasmonic nanosensors, summarizes the state-of-art in the molecular recognition of biological and chemical threat agents, and describes the application of various types of nanosensors in the detection of these threat agents. This book • Brings together recent academic research from an interdisciplinary approach including chemistry, biology, and nanotechnology. • Discusses current trends and developments. • Describes applications of a variety of different types of plasmonic nanosensors. • Explores outlooks and expectations for this technology. Showcasing the latest achievements in plasmonic nanosensors, this book will appeal to researchers in materials, chemical, and environmental engineering as well as chemistry interested in exploring the application of sensors to support environmental monitoring and global health.
This book portrays an extensive outline of “functionalized nanomaterials based supercapacitor”, including their fundamental as well as industrial-scale exploratory research. The contributed parts stretch the readers a complete report of the field of functionalized nanomaterials-based supercapacitor appropriate hypothetical standard of their structure to their execution, realization and potential application. It covers the latest system and functionalized nanomaterials for preparation, development, construction, validation and design of supercapacitor for commercial application. To best of our knowledge, there is no book available on the topic. Advanced undergraduate and graduate students can find this book a good source of knowledge and guidelines for their studies. They can find this book highly up to date, easy to use and understandable. This book is able to ease their thirst of learning of new and advanced electrochemical sensors. Moreover, the volume editors anticipate that this book is of significant interest to scientists working on the basic issues surrounding applications of nanotechnology in electrochemical sensors. Because of the multidisciplinary nature of this topic, this book attracts a broad audience including chemists, materials scientists, pharmacist, biologist and chemical engineers, who are involved and interested in the future frontiers of functionalized nanomaterials-based supercapacitor sciences and technology. Overall, this book is planned to be a reference book for researchers and scientists who are searching for new and advancement in supercapacitors sciences and technology.
This new volume reflects the multidisciplinary nature of the goals of biotechnology engineering and provides a firm foundation in the science and engineering of biological processes. The book discusses the combination of both engineering and science of biological processes from wastewater treatment to tissue engineering. The first part of this book discusses experimental and theoretical solutions for environmental pollution. The second part covers new frontiers in bioengineering and biotechnology. Part 3 illustrates the use of biotechnology and bio-based routes to sustainable composites, and finally, case studies with detailed information are presented in the last section.
At present, less than 30% of researchers worldwide are women. Long-standing biases and gender stereotypes are discouraging girls and women away from science-related fields, and STEM research in particular. Science and gender equality are, however, essential to ensure sustainable development as highlighted by UNESCO. In order to change traditional mindsets, gender equality must be promoted, stereotypes defeated, and girls and women should be encouraged to pursue STEM careers. The work presented here highlights the diversity of research performed across the entire breadth the nanotechnology field and presents advances in theory, experiment, and methodology with applications to compelling problems.
Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines: Current and Future Trends addresses current and future trends in the application and commercialization of nanosilicon. The book presents current, innovative and prospective applications and products based on nanosilicon and their binary system in the fields of energy harvesting and storage, lighting (solar cells and nano-capacitor and fuel cell devices and nanoLEDs), electronics (nanotransistors and nanomemory, quantum computing, photodetectors for space applications; biomedicine (substance detection, plasmonic treatment of disease, skin and hair care, implantable glucose sensor, capsules for drug delivery and underground water and oil exploration), and art (glass and pottery). Moreover, the book includes material on the use of advanced laser and proximal probes for imaging and manipulation of nanoparticles and atoms. In addition, coverage is given to carbon and how it contrasts and integrates with silicon with additional related applications. This is a valuable resource to all those seeking to learn more about the commercialization of nanosilicon, and to researchers wanting to learn more about emerging nanosilicon applications. - Features a variety of designs and operation of nano-devices, helping engineers to make the best use of nanosilicon - Contains underlying principles of how nanomaterials work and the variety of applications they provide, giving those new to nanosilicon a fundamental understanding - Assesses the viability of various nanoslicon devices for mass production and commercialization, thereby providing an important source of information for engineers
Following an introduction to biogenic metal nanoparticles, this book presents how they can be biosynthesized using bacteria, fungi and yeast, as well as their potential applications in biomedicine. It is shown that the synthesis of nanoparticles using microbes is eco-friendly and results in reproducible metal nanoparticles of well-defined sizes, shapes and structures. This biotechnological approach based on the process of biomineralization exploits the effectiveness and flexibility of biological systems. Chapters include practical protocols for microbial synthesis of nanoparticles and microbial screening methods for isolating a specific nanoparticle producer as well as reviews on process optimization, industrial scale production, biomolecule-nanoparticle interactions, magnetosomes, silver nanoparticles and their numerous applications in medicine, and the application of gold nanoparticles in developing sensitive biosensors.
Explains the principles and current thinking behind plasmon enhanced Fluorescence Describes the current developments in Surface Plasmon Enhanced, Coupled and Controlled Fluorescence Details methods used to understand solar energy conversion, detect and quantify DNA more quickly and accurately, and enhance the timeliness and accuracy of digital immunoassays Contains contributions by the world’s leading scientists in the area of fluorescence and plasmonics Describes detailed experimental procedures for developing both surfaces and nanoparticles for applications in metal-enhanced fluorescence