Download Free Colloidal Metal Oxide Nanoparticles Book in PDF and EPUB Free Download. You can read online Colloidal Metal Oxide Nanoparticles and write the review.

Colloidal Metal Oxide Nanoparticles: Synthesis, Characterization and Applications is a one-stop reference for anyone with an interest in the fundamentals, synthesis and applications of this interesting materials system. The book presents a simple, effective and detailed discussion on colloidal metal oxide nanoparticles. It begins with a general introduction of colloidal metal oxide nanoparticles, then delves into the most relevant synthesis pathways, stabilization procedures, and synthesis and characterization techniques. Final sections discuss promising applications, including bioimaging, biosensing, diagnostic, and energy applications—i.e., solar cells, supercapacitors and environment applications—i.e., the treatment of contaminated soil, water purification and waste remediation. - Provides the most comprehensive resource on the topic, from fundamentals, to synthesis and characterization techniques - Presents key applications, including biomedical, energy, electronic and environmental - Discusses the most relevant techniques for synthesis, patterning and characterization
Colloidal Metal Oxide Nanoparticles: Synthesis, Characterization and Applications is a one-stop reference for anyone with an interest in the fundamentals, synthesis and applications of this interesting materials system. The book presents a simple, effective and detailed discussion on colloidal metal oxide nanoparticles. It begins with a general introduction of colloidal metal oxide nanoparticles, then delves into the most relevant synthesis pathways, stabilization procedures, and synthesis and characterization techniques. Final sections discuss promising applications, including bioimaging, biosensing, diagnostic, and energy applications-i.e., solar cells, supercapacitors and environment applications-i.e., the treatment of contaminated soil, water purification and waste remediation.
Metal Oxide Nanoparticles A complete nanoparticle resource for chemists and industry professionals Metal oxide nanoparticles are integral to a wide range of natural and technological processes—from mineral transformation to electronics. Additionally, the fields of engineering, electronics, energy technology, and electronics all utilize metal oxide nanoparticle powders. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces presents readers with the most relevant synthesis and formulation approaches for using metal oxide nanoparticles as functional materials. It covers common processing routes and the assessment of physical and chemical particle properties through comprehensive and complementary characterization methods. This book will serve as an introduction to nanoparticle formulation, their interface chemistry and functional properties at the nanoscale. It will also act as an in-depth resource, sharing detailed information on advanced approaches to the physical, chemical, surface, and interface characterization of metal oxide nanoparticle powders and dispersions. Addresses the application of metal oxide nanoparticles and its economic impact Examines particle synthesis, including the principles of selected bottom-up strategies Explores nanoparticle formulation—a selection of processing and application routes Discusses the significance of particle surfaces and interfaces on structure formation, stability and functional materials properties Covers metal oxide nanoparticle characterization at different length scales With this valuable resource, academic researchers, industrial chemists, and PhD students can all gain insight into the synthesis, properties, and applications of metal oxide nanoparticles.
Metal Oxides in Energy Technologies provides, for the first time, a look at the wide range of energy applications of metal oxides. Topics covered include metal oxides materials and their applications in batteries, supercapacitors, fuel cells, solar cells, supercapacitors, and much more. The book is written by an experienced author of over 240 papers in peer-reviewed journals who was also been recognized as one of Thomson Reuter's "World's Most Influential Scientific Minds in 2015. This book presents a unique work that is ideal for academic researchers and engineers. - Presents an authoritative overview on metal oxides in energy technologies as written by an expert author who has published extensively in the area - Offers up-to-date coverage of a large, rapidly growing and complex literature - Focuses on applications, making it an ideal resource for those who want to apply this knowledge in industry
The precipitation of metal oxides from aqueous solutions creates nanoparticles with interesting solid state properties, thus building a bridge between solution chemistry and solid state chemistry. This book is the first monograph to deal with the formation of metal oxides from aqueous solutions with emphasis on the formation and physical chemistry of nanoparticles. Metal Oxide Chemistry and Synthesis: From Solution to Solid State * Provides a comprehensive introduction to the synthesis of finely divided materials * Presents the chemistry, physics and applications of these materials * Builds a bridge between classical solution chemistry and new developments in solid state chemistry * Introduces an important new area in inorganic chemistry Part I examines the mechanism of condensation of aqueous cations leading to polynuclear species or lattices, and rationalizes the behaviour of cations in precipitation phenomena by identifying pathways from soluble species to solids. The cation complex is also analysed in relation to the synthesis of some technologically interesting polymetallic oxides, e.g. ferroelectric, ferrimagnetic and supraconductor materials. Part II is devoted to the surface chemistry of oxide particles. The basic concepts relating to the reactivity of the oxide-solution interface are introduced and applied to various adsorption phenomena, such as aggregation, stability of particle size against ripening, etc. These properties are exploited for the synthesis of nanomaterials for a broad range of applictions such as ceramic powders, catalysts and nanocomposites. This will also be of interest to those wishing to understand geochemical and some biological processes. As well as being invaluable to researchers and postgraduate students of inorganic chemistry, this book will also be appreciated by solid-state chemists, materials scientists and colloid chemists with an interest in metal oxides.
Metal Oxide Nanoparticles in Organic Solvents discusses recent advances in the chemistry involved for the controlled synthesis and assembly of metal oxide nanoparticles, the characterizations required by such nanoobjects, and their size and shape depending properties. In the last few years, a valuable alternative to the well-known aqueous sol-gel processes was developed in the form of nonaqueous solution routes. Metal Oxide Nanoparticles in Organic Solvents reviews and compares surfactant- and solvent-controlled routes, as well as providing an overview of techniques for the characterization of metal oxide nanoparticles, crystallization pathways, the physical properties of metal oxide nanoparticles, their applications in diverse fields of technology, and their assembly into larger nano- and mesostructures. Researchers and postgraduates in the fields of nanomaterials and sol-gel chemistry will appreciate this book’s informative approach to chemical formation mechanisms in relation to metal oxides.
This book presents a state-of-the-art summary and critical analysis of work recently performed in leading research laboratories around the world on the implementation of metal oxide nanomaterial research methodologies for the discovery and optimization of new sensor materials and sensing systems. The book provides a detailed description and analysis of (i) metal oxide nanomaterial sensing principles, (ii) advances in metal oxide nanomaterial synthesis/deposition methods, including colloidal, emulsification, and vapor processing techniques, (iii) analysis of techniques utilized for the development of low temperature metal oxide nanomaterial sensors, thus enabling a broader impact into sensor applications, (iv) advances, challenges and insights gained from the in situ/ex situ analysis of reaction mechanisms, and (v) technical development and integration challenges in the fabrication of sensing arrays and devices.
Captures the most up-to-date research in the field, written in an accessible style by the world's leading experts.
Metal Oxide Nanocomposites: Synthesis and Applications summarizes many of the recent research accomplishments in the area of metal oxide-based nanocomposites. This book focussing on the following topics: Nanocomposites preparation and characterization of metal oxide nanocomposites; synthesis of core/shell metal oxide nanocomposites; multilayer thin films; sequential assembly of nanocomposite materials; semiconducting polymer metal oxide nanocomposites; graphene-based metal and metal oxide nanocomposites; carbon nanotube–metal–oxide nanocomposites; silicon mixed oxide nanocomposites; gas semiconducting sensors based on metal oxide nanocomposites; metal ]organic framework nanocomposite for hydrogen production and nanocomposites application towards photovoltaic and photocatalytic.
Our society depends heavily on metals. They are ubiquitous construction materials, critical interconnects in integrated circuits, common coinage materials, and more. Excitingly, new uses for metals are emerging with the advent of nanoscience, as metal crystals with nanoscale dimensions can display new and tunable properties. The optical and photothermal properties of metal nanocrystals have led to cancer diagnosis and treatment platforms now in clinical trials, while, at the same time, the ability to tune the surface features of metal nanocrystals is giving rise to designer catalysts that enable more sustainable use of precious resources. These are just two examples of how metal nanocrystals are addressing important social needs.