Download Free Colloidal And Morphological Behavior Of Block And Graft Copolymers Book in PDF and EPUB Free Download. You can read online Colloidal And Morphological Behavior Of Block And Graft Copolymers and write the review.

The molecules of block and graft copolymers are molecules of a higher order; they consist of homopolymer subchains which are interconnected by chemical valence bonds. This structural com plexity is manifested in the unusual behavior of block and graft copolymers both in solution and in bulk. Many types of interac tions are possible in block and graft copolymers in the solid state. Polymer subchains of one molecule can interact with other polymer subchains which may belong to the same molecule or to different molecules. Since polymer chains of chemically different composition are usually incompatible, thermodynamically unfavorable as well as thermodynamically favorable interactions exist in the solid state. In solutions of block and graft copolymers, the sit uation becomes even more complex, because interactions between the solvent molecules and the various subchains of the copolymer mole cules occur in addition to the interactions between the polymer chains. This multitude of interactions gives rise to a wide spec trum of colloidal and morphological properties which have no paral lel in less complex polymer systems such as homopolymers or random copolymers. Research on the colloidal and morphological behavior of block and graft copolymers is a relatively new field of endeavor. It started in 1954, when F. M. Merrett fractionated mixtures of grafted na tural rubber with the corresponding homopolymers and observed that colloidal sols were formed at certain points during his fractional precipitations.
The molecules of block and graft copolymers are molecules of a higher order; they consist of homopolymer subchains which are interconnected by chemical valence bonds. This structural com plexity is manifested in the unusual behavior of block and graft copolymers both in solution and in bulk. Many types of interac tions are possible in block and graft copolymers in the solid state. Polymer subchains of one molecule can interact with other polymer subchains which may belong to the same molecule or to different molecules. Since polymer chains of chemically different composition are usually incompatible, thermodynamically unfavorable as well as thermodynamically favorable interactions exist in the solid state. In solutions of block and graft copolymers, the sit uation becomes even more complex, because interactions between the solvent molecules and the various subchains of the copolymer mole cules occur in addition to the interactions between the polymer chains. This multitude of interactions gives rise to a wide spec trum of colloidal and morphological properties which have no paral lel in less complex polymer systems such as homopolymers or random copolymers. Research on the colloidal and morphological behavior of block and graft copolymers is a relatively new field of endeavor. It started in 1954, when F. M. Merrett fractionated mixtures of grafted na tural rubber with the corresponding homopolymers and observed that colloidal sols were formed at certain points during his fractional precipitations.
Block polymers represent another milestone in the preparation of polymers of controlled structure. Catalysts and polymerization methods that allowed the preparation of polymers in which the stereo- and geometric isomerism of the monomer units could be con trolled have indeed been among the major developments in polymer science during the last decade. The synthesis of block polymers, in which the sequence length of the comonomer units can be con trolled, portends equally important developments in the science and technology of polymers. The papers collected in this volume cover primarily the pro ceedings of the most recent symposium on block polymers, sponsored by the Division of Polymer Chemistry of the American Chemical Society. It was held in New York City during the Society's 158th National Meeting in September, 1969. Additional contributions from selected authors were invited especially for this book to achieve the most up-to-date account of the advances that have been made since the development of the thermoplastic elastomers that first brought into focus this important area of research. The first two papers in this volume draw attention to the various problems that should be considered in the preparation of block polymers of precisely defined structure from styrene and butadiene or isoprene by anionic polymerization. Characterization of block polymers presents many problems and there is a paucity of systematic work in this area. Attention has been given to the di lute solution properties of block polymers,however, in one of the papers in this volume.
A summary of block copolymer chemical structures and synthesis. It discusses physical methods of characterization such as computer simulation, microhardness, dielectric spectroscopy, thermal mechanical relaxation, ultrasonic characterization, transmission electron microscopy, X-ray scattering, and NMR, among others. It also outlines rheological and processing parameters in the multiphase polymer systems with stable microstructures.