Download Free Collision Processes And Excitation Of Uv Emission From Planetary Atmospheric Gases Book in PDF and EPUB Free Download. You can read online Collision Processes And Excitation Of Uv Emission From Planetary Atmospheric Gases and write the review.

Over the past few decades, the excitation and ionization of atmospheric gases has become an area of intense research. A large amount of data have been accumulated concerning the various elementary processes which occur when photons, electrons and ions collide with atoms and molecules. This scattered information has now been collected in a handbook for the first time, and the authors give a critical analysis of relevant data. This book is a comprehensive and detailed study of the available information and is distinguished by the following outstanding features: the consideration of a large number of atmospheric constituents, including H^O2, H, N^O2, N, O^O2, O, CO, CO^O2, H^O2O, HCl and some hydrocarbons the maximum number of space particles, including magnetospheric particles, are considered as projectiles: photons, electrons, hydrogen atoms, protons and helium ionsthe energy range under study corresponds to the real spectrum of cosmic fluxes, from threshold values for elementary processes up to several thousand keV the recommended values of cross sections, obtained from analysis of the available experimental data, are given in the handbook and their accuracy is estimated. These features make the handbook particularly valuable to specialists in the aeronomy of planets, comets and active perturbations, as well as to experimentalists and theoreticians working in the fields of plasma physics, atomic and molecular physics, physics of the upper atmosphere, chemical physics, optics and spectroscopy.
Over the past few decades, the excitation and ionization of atmospheric gases has become an area of intense research. A large amount of data have been accumulated concerning the various elementary processes which occur when photons, electrons and ions collide with atoms and molecules. This scattered information has now been collected in a handbook for the first time, and the authors give a critical analysis of relevant data. This book is a comprehensive and detailed study of the available information and is distinguished by the following outstanding features: the consideration of a large number of atmospheric constituents, including H^O2, H, N^O2, N, O^O2, O, CO, CO^O2, H^O2O, HCl and some hydrocarbons the maximum number of space particles, including magnetospheric particles, are considered as projectiles: photons, electrons, hydrogen atoms, protons and helium ionsthe energy range under study corresponds to the real spectrum of cosmic fluxes, from threshold values for elementary processes up to several thousand keV the recommended values of cross sections, obtained from analysis of the available experimental data, are given in the handbook and their accuracy is estimated. These features make the handbook particularly valuable to specialists in the aeronomy of planets, comets and active perturbations, as well as to experimentalists and theoreticians working in the fields of plasma physics, atomic and molecular physics, physics of the upper atmosphere, chemical physics, optics and spectroscopy.
This is the first comprehensive treatment of the interactions of atoms and molecules with charged particles, photons and laser fields. Addressing the subject from a unified viewpoint, the volume reflects our present understanding of many-particle dynamics in rearrangement and fragmentation reactions.
Written by a leading expert on comets, this textbook is divided into seven main elements with a view to allowing advanced students to appreciate the interconnections between the different elements. The author opens with a brief introductory segment on the motivation for studying comets and the overall scope of the book. The first chapter describes fundamental aspects most usually addressed by ground-based observation. The author then looks at the basic physical phenomena in four separate chapters addressing the nucleus, the emitted gas, the emitted dust, and the solar wind interaction. Each chapter introduces the basic physics and chemistry but then new specific measurements by Rosetta instruments at comet Churyumov-Gerasimenko are brought in. A concerted effort has been made to distinguish between established fact and conjecture. Deviations and inconsistencies are brought out and their significance explained. Links to previous observations of comets Tempel 1, Wild 2, Hartley 2, Halley and others are made. The author then closes with three smaller chapters on related objects, the loss of comets, and prospects for future exploration. This textbook includes over 275 graphics and figures – most of which are original. Thorough explanations and derivations are included throughout the chapters. The text is therefore designed to support MSc. students and new PhD students in the field wanting to gain a solid overview of the state-of-the-art.
Covers experimental, modeling and theoretical results with the primary objective of the TIGER initiative to determine the variable solar EUV/UV and X-ray fluxes to improve the existing and future thermospheric-ionospheric (T/I) models and to derive EUV/UV indices or proxies for various applications in space research and space-related fields such as navigation and communication. Future developments and requirements were also reviewed.
The authors have put forth great efforts in gathering present day knowledge about different objects within our solar system and universe. This book features the most current information on the subject with information acquired from noted scientists in this area. The main objective is to convey the importance of the subject and provide detailed information on the physical makeup of our planetary system and technologies used for research. Information on educational projects has also been included in the Radio Astronomy chapters.This information is a real plus for students and educators considering a career in Planetary Science or for increasing their knowledge about our planetary system.