Download Free Colliding Bodies Optimization Book in PDF and EPUB Free Download. You can read online Colliding Bodies Optimization and write the review.

This book presents and applies a novel efficient meta-heuristic optimization algorithm called Colliding Bodies Optimization (CBO) for various optimization problems. The first part of the book introduces the concepts and methods involved, while the second is devoted to the applications. Though optimal design of structures is the main topic, two chapters on optimal analysis and applications in constructional management are also included. This algorithm is based on one-dimensional collisions between bodies, with each agent solution being considered as an object or body with mass. After a collision of two moving bodies with specified masses and velocities, these bodies again separate, with new velocities. This collision causes the agents to move toward better positions in the search space. The main algorithm (CBO) is internally parameter independent, setting it apart from previously developed meta-heuristics. This algorithm is enhanced (ECBO) for more efficient applications in the optimal design of structures. The algorithms are implemented in standard computer programming languages (MATLAB and C++) and two main codes are provided for ease of use.
With recent advancements in electronics, specifically nanoscale devices, new technologies are being implemented to improve the properties of automated systems. However, conventional materials are failing due to limited mobility, high leakage currents, and power dissipation. To mitigate these challenges, alternative resources are required to advance electronics further into the nanoscale domain. Carbon nanotube field-effect transistors are a potential solution yet lack the information and research to be properly utilized. Major Applications of Carbon Nanotube Field-Effect Transistors (CNTFET) is a collection of innovative research on the methods and applications of converting semiconductor devices from micron technology to nanotechnology. The book provides readers with an updated status on existing CNTs, CNTFETs, and their applications and examines practical applications to minimize short channel effects and power dissipation in nanoscale devices and circuits. While highlighting topics including interconnects, digital circuits, and single-wall CNTs, this book is ideally designed for electrical engineers, electronics engineers, students, researchers, academicians, industry professionals, and practitioners working in nanoscience, nanotechnology, applied physics, and electrical and electronics engineering.
The book presents eight well-known and often used algorithms besides nine newly developed algorithms by the first author and his students in a practical implementation framework. Matlab codes and some benchmark structural optimization problems are provided. The aim is to provide an efficient context for experienced researchers or readers not familiar with theory, applications and computational developments of the considered metaheuristics. The information will also be of interest to readers interested in application of metaheuristics for hard optimization, comparing conceptually different metaheuristics and designing new metaheuristics.
The book presents recently developed efficient metaheuristic optimization algorithms and their applications for solving various optimization problems in civil engineering. The concepts can also be used for optimizing problems in mechanical and electrical engineering.
This book discusses the application of metaheuristic algorithms in a number of important optimization problems in civil engineering. Advances in civil engineering technologies require greater accuracy, efficiency and speed in terms of the analysis and design of the corresponding systems. As such, it is not surprising that novel methods have been developed for the optimal design of real-world systems and models with complex configurations and large numbers of elements. This book is intended for scientists, engineers and students wishing to explore the potential of newly developed metaheuristics in practical problems. It presents concepts that are not only applicable to civil engineering problems, but can also used for optimizing problems related to mechanical, electrical, and industrial engineering. It is an essential resource for civil, mechanical and electrical engineers who use optimization methods for design, as well as for students and researchers interested in structural optimization.
This Volume discusses the underlying principles and analysis of the different concepts associated with an emerging socio-inspired optimization tool referred to as Cohort Intelligence (CI). CI algorithms have been coded in Matlab and are freely available from the link provided inside the book. The book demonstrates the ability of CI methodology for solving combinatorial problems such as Traveling Salesman Problem and Knapsack Problem in addition to real world applications from the healthcare, inventory, supply chain optimization and Cross-Border transportation. The inherent ability of handling constraints based on probability distribution is also revealed and proved using these problems.
Mechanical Engineering domain problems are generally complex, consisting of different design variables and constraints. These problems may not be solved using gradient-based optimization techniques. The stochastic nature-inspired optimization techniques have been proposed in this book to efficiently handle the complex problems. The nature-inspired algorithms are classified as bio-inspired, swarm, and physics/chemical-based algorithms. Socio-inspired is one of the subdomains of bio-inspired algorithms, and Cohort Intelligence (CI) models the social tendencies of learning candidates with an inherent goal to achieve the best possible position. In this book, CI is investigated by solving ten discrete variable truss structural problems, eleven mixed variable design engineering problems, seventeen linear and nonlinear constrained test problems and two real-world applications from manufacturing domain. Static Penalty Function (SPF) is also adopted to handle the linear and nonlinear constraints, and limitations in CI and SPF approaches are examined. Constraint Handling in Cohort Intelligence Algorithm is a valuable reference to practitioners working in the industry as well as to students and researchers in the area of optimization methods.
While the weight of a structure constitutes a significant part of the cost, a minimum weight design is not necessarily the minimum cost design. Little attention in structural optimization has been paid to the cost optimization problem, particularly of realistic three-dimensional structures. Cost optimization is becoming a priority in all civil engineering projects, and the concept of Life-Cycle Costing is penetrating design, manufacturing and construction organizations. In this groundbreaking book the authors present novel computational models for cost optimization of large scale, realistic structures, subjected to the actual constraints of commonly used design codes. As the first book on the subject this book: Contains detailed step-by-step algorithms Focuses on novel computing techniques such as genetic algorithms, fuzzy logic, and parallel computing Covers both Allowable Stress Design (ASD) and Load and Resistance Factor Design (LRFD) codes Includes realistic design examples covering large-scale, high-rise building structures Presents computational models that enable substantial cost savings in the design of structures Fully automated structural design and cost optimization is where large-scale design technology is heading, thus Cost Optimization of Structures: Fuzzy Logic, Genetic Algorithms, and Parallel Computing will be of great interest to civil and structural engineers, mechanical engineers, structural design software developers, and architectural engineers involved in the design of structures and life-cycle cost optimisation. It is also a pioneering text for graduate students and researchers working in building design and structural optimization.
This second edition of Impact Mechanics offers new analytical methods with examples for the dynamics of low-speed impact.