Download Free Cold Tolerance In Plants Book in PDF and EPUB Free Download. You can read online Cold Tolerance In Plants and write the review.

Presenting the latest research on the effects of cold and sub-zero temperatures on plant distribution, growth and yield, this comprehensive volume contains 28 chapters by international experts covering basic molecular science to broad ecological studies on the impact of global warming, and an industry perspective on transgenic approaches to abiotic stress tolerance. With a focus on integrating molecular studies in the laboratory with field research and physiological studies of whole plants in their natural environments, this book covers plant physiology, production, development, agronomy, ecology, breeding and genetics, and their applications in agriculture and horticulture.
Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants provides the latest, in-depth understanding of the molecular mechanisms associated with the development of stress and cross-stress tolerance in plants. Plants growing under field conditions are constantly exposed, either sequentially or simultaneously, to many abiotic or biotic stress factors. As a result, many plants have developed unique strategies to respond to ever-changing environmental conditions, enabling them to monitor their surroundings and adjust their metabolic systems to maintain homeostasis. Recently, priming mediated stress and cross-stress tolerance (i.e., greater tolerance to a second, stronger stress after exposure to a different, milder primary stress) have attracted considerable interest within the scientific community as potential means of stress management and for producing stress-resistant crops to aid global food security. Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants comprehensively reviews the physiological, biochemical, and molecular basis of cross-tolerance phenomena, allowing researchers to develop strategies to enhance crop productivity under stressful conditions and to utilize natural resources more efficiently. The book is a valuable asset for plant and agricultural scientists in corporate or government environments, as well as educators and advanced students looking to promote future research into plant stress tolerance. - Provides comprehensive information for developing multiple stress-tolerant crop varieties - Includes in-depth physiological, biochemical, and molecular information associated with cross-tolerance - Includes contribution from world-leading cross-tolerance research group - Presents color images and diagrams for effective communication of key concepts
The mechanisms underlying endurance and adaptation to environmental stress factors in plants have long been the focus of intense research. Plants overcome environmental stresses by development of tolerance, resistance or avoidance mechanisms, adjusting to a gradual change in its environment which allows them to maintain performance across a range of adverse environmental conditions. Plant Acclimation to Environmental Stress presents the latest ideas and trends on induced acclimation of plants to environmental stresses under changing environment. Written by experts around the globe, this volume adds new dimensions in the field of plant acclimation to abiotic stress factors. Comprehensive and lavishly illustrated, Plant Acclimation to Environmental Stress is a state-of-the-art guide suited for scholars and researchers working in the field of crop improvement, genetic engineering and abiotic stress tolerance.
Low temperature represents, together with drought and salt stress, one of the most important environmental constraints limiting the pro ductivity and the distribution of plants on the Earth. Winter survival, in particular, is a highly complex phenomenon, with regards to both stress factors and stress responses. The danger from winter cold is the result not only of its primary effect, i. e. the formation of ice in plant tissues; additional threats are presented by the freezing of water in and on the ground and by the load and duration ofthe snow cover. In recent years, a number of books and reviews on the subject of chilling and frost resistance in plants have appeared: all of these publications, however, concentrate principally on the mechanisms of injury and resistance to freezing at the cellular or molecular level. We are convinced that analysis of the ultrastructural and biochemical alterations in the cell and particularly in the plasma membrane during freezing is the key to understanding the limits of frost resistance and the mechanisms of cold acclimation. This is undoubtedly the immediate task facing those of us engaged in resistance research. It is nevertheless our opinion that, in addition to understanding the basic physiological events, we should be careful not to overlook the importance of the comparative aspects of the freezing processes, the components of stress avoidance and tolerance and the specific levels of resistance.
Completely updated from the successful first edition, this book provides a timely update on the recent progress in our knowledge of all aspects of plant perception, signalling and adaptation to a variety of environmental stresses. It covers in detail areas such as drought, salinity, waterlogging, oxidative stress, pathogens, and extremes of temperature and pH. This second edition presents detailed and up-to-date research on plant responses to a wide range of stresses Includes new full-colour figures to help illustrate the principles outlined in the text Is written in a clear and accessible format, with descriptive abstracts for each chapter. Written by an international team of experts, this book provides researchers with a better understanding of the major physiological and molecular mechanisms facilitating plant tolerance to adverse environmental factors. This new edition of Plant Stress Physiology is an essential resource for researchers and students of ecology, plant biology, agriculture, agronomy and plant breeding.
Plant Cold Acclimation: Methods and Protocols details many of the methods and protocols commonly used to study plant cold acclimation and freezing tolerance, breeding, genetics, physiology or molecular biology, or any combination of these specialties. Chapters focus on interdisciplinary approaches, experimental methods, and concepts from different areas of science. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Cold Acclimation: Methods and Protocols seeks to help not only new researchers starting in this field, but also those already working in a particular area of cold acclimation and freezing tolerance research who are looking to expand their range of experimental approaches.
Cold stress is one of the prevalent environmental stresses affecting crop productivity, particularly in temperate regions. Numerous plant types of tropical or subtropical origin are injured or killed by non-freezing low temperature, and display a range of symptoms of chilling injury such as chlorosis, necrosis, or growth retardation. In contrast, chilling tolerant species thrive well at such temperatures. To thrive under cold stress conditions, plants have evolved complex mechanisms to identify peripheral signals that allow them to counter varying environmental conditions. These mechanisms include stress perception, signal transduction, transcriptional activation of stress-responsive target genes, and synthesis of stress-related proteins and other molecules, which help plants to strive through adverse environmental conditions. Conventional breeding methods have met with limited success in improving the cold tolerance of important crop plants through inter-specific or inter-generic hybridization. A better understanding of physiological, biochemical and molecular responses and tolerance mechanisms, and discovery of novel stress-responsive pathways and genes may contribute to efficient engineering strategies that enhance cold stress tolerance. It is therefore imperative to accelerate the efforts to unravel the biochemical, physiological and molecular mechanisms underlying cold stress tolerance in plants. Through this new book, we intend to integrate the contributions from plant scientists targeting cold stress tolerance mechanisms using physiological, biochemical, molecular, structural and systems biology approaches. It is hoped that this collection will serve as a reference source for those who are interested in or are actively engaged in cold stress research.
The molecular aspects of recognition and transduction of different kinds of signals is a research area that is spawning increasing interest world-wide. Major advances have been made in animal systems but recently plants too, have become particularly attractive because of their promising role in biotechnology. The type of signals peculiar to the plant world and the similarity of plant transduction pathways investigated thus far to their animal counterparts are prompting more and more studies in this modern area of cell biology. The present book provides a comprehensive survey of all aspects of the recognition and transduction of plant signals of both chemical and physical origin such as hormones, light, toxins and elicitors. The contributing authors are drawn from diverse areas of plant physiology and plant molecular biology and present here different approaches to studying the recognition and transduction of different signals which specifically trigger molecular processes in plants. Recent advances in the field are reviewed, providing the reader with the current state of knowledge as well as insight into research perspectives and future developments. The book should interest a wide audience that includes not only researchers, advanced students, and teachers of plant biology, biochemistry and agriculture, but it has also significant implications for people working in related fields of animal systems.
Demystifies the genetic, biochemical, physiological, and molecular mechanisms underlying heat stress tolerance in plants Heat stress—when high temperatures cause irreversible damage to plant function or development—severely impairs the growth and yield of agriculturally important crops. As the global population mounts and temperatures continue to rise, it is crucial to understand the biochemical, physiological, and molecular mechanisms of thermotolerance to develop ‘climate-smart’ crops. Heat Stress Tolerance in Plants provides a holistic, cross-disciplinary survey of the latest science in this important field. Presenting contributions from an international team of plant scientists and researchers, this text examines heat stress, its impact on crop plants, and various mechanisms to modulate tolerance levels. Topics include recent advances in molecular genetic approaches to increasing heat tolerance, the potential role of biochemical and molecular markers in screening germplasm for thermotolerance, and the use of next-generation sequencing to unravel the novel genes associated with defense and metabolite pathways. This insightful book: Places contemporary research on heat stress in plants within the context of global climate change and population growth Includes diverse analyses from physiological, biochemical, molecular, and genetic perspectives Explores various approaches to increasing heat tolerance in crops of high commercial value, such as cotton Discusses the applications of plant genomics in the development of thermotolerant ‘designer crops’ An important contribution to the field, Heat Stress Tolerance in Plants is an invaluable resource for scientists, academics, students, and researchers working in fields of pulse crop biochemistry, physiology, genetics, breeding, and biotechnology.