Download Free Cold Plasma Book in PDF and EPUB Free Download. You can read online Cold Plasma and write the review.

Cold Plasma in Food and Agriculture: Fundamentals and Applications is an essential reference offering a broad perspective on a new, exciting, and growing field for the food industry. Written for researchers, industry personnel, and students interested in nonthermal food technology, this reference will lay the groundwork of plasma physics, chemistry, and technology, and their biological applications. Food scientists and food engineers interested in understanding the theory and application of nonthermal plasma for food will find this book valuable because it provides a roadmap for future developments in this emerging field. This reference is also useful for biologists, chemists, and physicists who wish to understand the fundamentals of plasma physics, chemistry, and technology and their biological interactions through applying novel plasma sources to food and other sensitive biomaterials. Examines the topic of cold plasma technology for food applications Demonstrates state-of-the-art developments in plasma technology and potential solutions to improve food safety and quality Presents a solid introduction for readers on the topics of plasma physics and chemistry that are required to understand biological applications for foods Serves as a roadmap for future developments for food scientists, food engineers, and biologists, chemists, and physicists working in this emerging field
Cold plasma is one of the newest technologies tested for food preservation. In the last decade, this novel approach has shown promising results as a disinfectant of food products and packaging materials. Cold plasma is also affordable, waterless, waste-free, and leaves no chemical residue on the product. This exciting new technology is covered thoroughly in Advances in Cold Plasma Applications for Food Preservation. The book presents the basic principles of cold plasma, examples of food products disinfected by cold plasma, and the challenges of using cold plasma to maximize microbial and spore inactivation. Some chapters are devoted to specific applications of the technology, such as the use of cold plasma for space missions. Insights about the required regulations for this technology are also discussed. Written and edited by experts in the field, Advances in Cold Plasma Applications for Food Preservation is aimed at academic researchers, food scientists, and government officials working on disinfection of food products. Covers the basic principles of cold plasma Presents novel information and updated results in microbial, spore, and enzyme inactivation in different food products Explores the use of cold plasma in disinfection of food products, including packaged food and food packaging materials and discuss how some food components are modified Includes the description of some of the current equipment devices and the requirements to design specific food processing systems Investigates specific uses of cold plasma in some applications such as space food Details current regulatory status of cold plasma for food applications
Cold atmospheric plasma (CAP) emerges as a possible new modality for cancer treatment. This book provides a comprehensive introduction into fundamentals of the CAP and plasma devices used in plasma medicine. An analysis of the mechanisms of plasma interaction with cancer and normal cells including description of possible mechanisms of plasma selectivity is included. Recent advances in the field, the primary challenges and future directions are presented.
This book provides readers with a comprehensive overview of cold plasma technology for tackling the various food-related hazards in a wide range of food sectors. The principles and characteristics of cold plasma generation in gas and its interaction with liquids, as well as its combating modes of action for common hazards (e.g., bacteria, spores, biofilms, fungi, and fungal toxins) are emphasized in this book. It also presents the applications of cold plasma or its hurdles with other techniques to assure the microbiological safety of the key food classifications, including fruits, vegetables, cereals, grains, meat, aquatic products, liquid food products (e.g., juices, milk), nuts, spices, herbs, and food packaging. This book is useful for researchers to grasp the comprehensive understandings of how food safety can be controlled with cold plasma technology. This book also provides adequate information for engineers in food industry for better development and optimization of the plasma-generating systems. Government institutions that are responsible for food safety regulations can understand more knowledge about the intricacies and influencing factors, which should be considered for regulating the applications of cold plasma technology in food.
Non-equilibrium plasma (or low-temperature plasma, LTP) offers a chemically rich medium without the need for high power and elevated temperatures. This unique characteristic has made LTP very useful for various industrial and biomedical applications where thermal effects are not desirable. In addition, the relative simplicity of the design of sources capable of generating non-equilibrium plasma at atmospheric pressure makes LTP a very attractive technology that can accomplish the same or better results than much more complex and expensive approaches. This book describes various low-temperature plasma sources and some of their environmental and biomedical applications. The plasma sources covered in this book include low-temperature plasma jets which are novel devices that can launch low-power, low-temperature plasma plumes in ambient air. These plasma plumes can accurately and reliably be aimed at a surface to be treated or at a biological target such as cells and tissues. The application of these plasma jets in medicine, including in cancer therapy, are thoroughly discussed in this book. The contents of this book will appeal to engineers, medical experts, academics, and students who work with plasma technology.
Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.
This book presents the state of the art in clinical plasma medicine and outlines translational research strategies. Written by an international group of authors, it is divided into four parts. Part I is a detailed introduction and includes basic and recent research information on plasma sciences, plasma devices and mechanisms of biological plasma effects. Parts II and III provide valuable clinical insights f.e. into the treatment of superficial contaminations, ulcerations, wounds, treatment of cells in cancer, special indications like in heart surgery, dentistry, palliative treatment in head and neck cancer or the use of plasma in hygiene. Part IV offers information on how and where to qualify in plasma medicine and which companies produce and supply medical devices and is thus of particular interest to medical practitioners. This comprehensive book offers a sciences based practical to the clinical use of plasma and includes an extended selection of scientific medical data and translational literature.
Cold atmospheric plasma (CAP) is a promising and rapidly emerging technology for a wide range of applications, from daily life to industry. CAP’s key advantage is its unique ability to effectively deliver reactive species to subjects including biological materials, liquid media, aerosols, and manufactured surfaces. This book assesses the state-of-art in CAP research and implementation for applications including agriculture, medicine, environment, materials, catalysis, and energy. The mechanisms of generation and transport of the key reactive species in the plasma are introduced and examined in the context of their applications. Opportunities and challenges for novel technologies, fresh ideas/concepts, expanded multidisciplinary study, and new applications are discussed. The authors’ vision for the converging trends across diverse disciplines is proposed to stimulate critical discussions, research directions, and collaborations.
Non-equilibrium atmospheric pressure plasma jets (APPJs) are of intense interest in current low-temperature plasma research because of their immense potential for material processing and biomedical applications. Depending on the jet configuration and the electrical excitation, plasma characteristics including heat, charged particle, electric field, and chemically active species may differ significantly. Other important parameters of importance in these studies are the kind of utilized working gas and gas flow rate. This book presents the electrical characterization of DBD-based APPJs for three electrode arrangements: ring electrode, pin electrode and floating helix electrode configurations. The analysis presented here will serve to help in establishing an optimum range of operation for a cold plasma jet without arcing and without any physical damage to the electrodes. Furthermore, the experimental results provided in the book establish the significance of the type of working gas on the power consumption and on the jet length obtained. These developed cold DBD-based APPJs of larger lengths may be useful for diverse biological applications and surface treatments.