Download Free Cold Dark Matter Substructure And Galactic Disks I Book in PDF and EPUB Free Download. You can read online Cold Dark Matter Substructure And Galactic Disks I and write the review.

The paradigm of a dark energy- and dark matter-dominated Universe, with the hierarchical merger scenario for the formation of galaxies, has scored impressive successes in matching the observed Universe. However, the theory fails to explain the difficulty in generating ordinary disk galaxies such as the Milky Way, suggesting that some important physics must be missing in current models. IAU Symposium 254 was organized to address this question, gathering researchers from an unusually broad range of fields, from cosmology to interstellar matter, and the formation and evolution of stars. High-class reviews, lectures and posters combine to define the frontiers in the field and point the way to new avenues of research. This volume presents a unique set of succinct overviews illuminating the full range of topics in this very active field. It also honors Danish astrophysicist Bengt Strömgren (1908-1987), who laid much of the foundation for this entire field.
Describes the dark matter problem in particle physics, astrophysics and cosmology for graduate students and researchers.
An important, open research topic today is to understand the relevance that dark matter halo substructure may have for dark matter searches. In the standard cosmological model, halo substructure or subhalos are predicted to be largely abundant inside larger halos, for example, galaxies such as ours, and are thought to form first and later merge to form larger structures. Dwarf satellite galaxies—the most massive exponents of halo substructure in our own galaxy—are already known to be excellent targets for dark matter searches, and indeed, they are constantly scrutinized by current gamma-ray experiments in the search for dark matter signals. Lighter subhalos not massive enough to have a visible counterpart of stars and gas may be good targets as well, given their typical abundances and distances. In addition, the clumpy distribution of subhalos residing in larger halos may boost the dark matter signals considerably. In an era in which gamma-ray experiments possess, for the first time, the exciting potential to put to test the preferred dark matter particle theories, a profound knowledge of dark matter astrophysical targets and scenarios is mandatory should we aim for accurate predictions of dark matter-induced fluxes for investing significant telescope observing time on selected targets and for deriving robust conclusions from our dark matter search efforts. In this regard, a precise characterization of the statistical and structural properties of subhalos becomes critical. In this Special Issue, we aim to summarize where we stand today on our knowledge of the different aspects of the dark matter halo substructure; to identify what are the remaining big questions, and how we could address these; and, by doing so, to find new avenues for research.
Publisher description
This book constitutes the proceedings of a very topical workshop aimed at understanding the shapes of the baryonic and dark matter components of galaxies. Several groups presented their recent results from observations and numerical N-body simulations.
This book consists of invited reviews written by world-renowned experts on the subject of the outskirts of galaxies, an upcoming field which has been understudied so far. These regions are faint and hard to observe, yet hide a tremendous amount of information on the origin and early evolution of galaxies. They thus allow astronomers to address some of the most topical problems, such as gaseous and satellite accretion, radial migration, and merging. The book is published in conjunction with the celebration of the end of the four-year DAGAL project, an EU-funded initial training network, and with a major international conference on the topic held in March 2016 in Toledo. It thus reflects not only the views of the experts, but also the scientific discussions and progress achieved during the project and the meeting. The reviews in the book describe the most modern observations of the outer regions of our own Galaxy, and of galaxies in the local and high-redshift Universe. They tackle disks, haloes, streams, and accretion as observed through deep imaging and spectroscopy, and guide the reader through the various formation and evolution scenarios for galaxies. The reviews focus on the major open questions in the field, and explore how they can be tackled in the future. This book provides a unique entry point into the field for graduate students and non-specialists, and serves as a reference work for researchers in this exciting new field.
Most astronomers and physicists now believe that the matter content of the Universe is dominated by dark matter: hypothetical particles which interact with normal matter primarily through the force of gravity. Though invisible to current direct detection methods, dark matter can explain a variety of astronomical observations. This book describes how this theory has developed over the past 75 years, and why it is now a central feature of extragalactic astronomy and cosmology. Current attempts to directly detect dark matter locally are discussed, together with the implications for particle physics. The author comments on the sociology of these developments, demonstrating how and why scientists work and interact. Modified Newtonian Dynamics (MOND), the leading alternative to this theory, is also presented. This fascinating overview will interest cosmologists, astronomers and particle physicists. Mathematics is kept to a minimum, so the book can be understood by non-specialists.
The nature and essence of Dark Matter and Dark Energy have become the central issue in modern cosmology over the past years. This extensive volume, an outgrowth of a topical and tutorial summer school, has been set up with the aim of constituting an advanced-level, multi-authored textbook which meets the needs of both postgraduate students and young researchers in the fields of modern cosmology and astrophysics.
This book reviews the interconnection of cosmology and particle physics over the last decade. It provides introductory courses in supersymmetry, superstring and M-theory, responding to an increasing interest to evaluate the cosmological consequences of these theories. Based on a series of extended courses providing an introduction to the physics of the very early universe, in the light of the most recent advances in our understanding of the fundamental interactions, it reviews all the classical issues (inflation, primordial fluctuations, dark matter, baryogenesis), but also introduces the most recent ideas about what happened at the Big Bang, and before.