Download Free Cohesive Zone Modeling Of Fracture Of Sustainable And Functionally Graded Concrete Book in PDF and EPUB Free Download. You can read online Cohesive Zone Modeling Of Fracture Of Sustainable And Functionally Graded Concrete and write the review.

There is a constant demand from the industry to provide better, more situation dependent construction materials; materials which are able to satisfy strength requirements while also able to accommodate other design requirements such as ductility, fracture resistance, thermal resistance/insulation, etc. Functionally graded materials (FGMs) are one such material. This study investigates the fracture process of sustainable concrete, fiber reinforced concrete, and of functionally graded concrete slabs. Both two-dimensional and three-dimensional problems are analyzed. The primary focus of the thesis is on sustainable, functionally graded concrete slabs, emphasizing the computational/mechanical aspects of fracture. A model of the slabs is developed; which incorporates a variety of cohesive zone models (CZMs) into an implicit, nonlinear finite element scheme. Intrinsic cohesive zone elements, with traction-separation relationships defined along the crack surface, are utilized to simulate mode I fracture of the slabs. Based on the load to crack mouth opening displacement (CMOD) relationships of the slab, one is able to optimize concrete properties and placement to reach predefined goals. A parametric study is conducted on the fracture parameters of the slab; the results of which show that the variations in the CZMs have a direct correlation with the overall behaviour of the slab. Additionally, in conducting the experiments for the slabs, a new fracture test for concrete is developed. The attractive feature of the test is that it uses a specimen geometry which is easily obtained from in-situ concrete in the field. Technology exists which allows us to extract cylindrical cores from concrete structures at relative ease. This study proposes a specimen geometry which can easily be developed from these cylindrical cores called the disk-shaped compact tension (DCT) specimen. A series of experiments are conducted on the specimen, and computational simulations are carried out. A parametric study is done; the results of which, show that the specimen geometry is able to predict the mode I fracture properties of concrete, with both virgin and recycled aggregates, with relative accuracy and ease.
Cementitious materials, rocks and fibre-reinforced composites commonly termed as quasibrittle, need a different fracture mechanics approach to model the crack propagation study because of the presence of significant size of fracture process zone ahead of the crack-tip. Recent studies show that concrete structures manifest three important stages in fracture process: crack initiation, stable crack propagation and unstable fracture or failure. Fracture Mechanics concept can better explain the above various stages including the concepts of ductility, size-effect, strain softening and post-cracking behavior of concrete and concrete structures. The book presents a basic introduction on the various nonlinear concrete fracture models considering the respective fracture parameters. To this end, a thorough state-of-the-art review on various aspects of the material behavior and development of different concrete fracture models is presented. The development of cohesive crack model for standard test geometries using commonly used softening functions is shown and extensive studies on the behavior of cohesive crack fracture parameters are also carried out. The subsequent chapter contains the extensive study on the double-K and double-G fracture parameters in which some recent developments on the related fracture parameters are illustrated including introduction of weight function method to Double-K Fracture Model and formulization of size-effect behavior of the double-K fracture parameters. The application of weight function approach for determining of the KR-curve associated with cohesive stress distribution in the fracture process zone is also presented. Available test data are used to validate the new approach. Further, effect of specimen geometry, loading condition, size-effect and softening function on various fracture parameters is investigated. Towards the end, a comparative study between different fracture parameters obtained from various models is presented.
Fracture and Size Effect in Concrete and Other Quasibrittle Materials is the first in-depth text on the application of fracture mechanics to the analysis of failure in concrete structures. The book synthesizes a vast number of recent research results in the literature to provide a comprehensive treatment of the topic that does not give merely the facts - it provides true understanding. The many recent results on quasibrittle fracture and size effect, which were scattered throughout many periodicals, are compiled here in a single volume. This book presents a well-rounded discussion of the theory of size effect and scaling of failure loads in structures. The size effect, which is the most important practical manifestation of fracture behavior, has become a hot topic. It has gained prominence in current research on concrete and quasibrittle materials. The treatment of every subject in Fracture and Size Effect in Concrete and Other Quasibrittle Materials proceeds from simple to complex, from specialized to general, and is as concise as possible using the simplest level of mathematics necessary to treat the subject clearly and accurately. Whether you are an engineering student or a practicing engineer, this book provides you with a clear presentation, including full derivations and examples, from which you can gain real understanding of fracture and size effect in concrete and other quasibrittle materials.
Mechanical properties of composite materials can be improved by tailoring their microstructures. Optimal microstructures of composites, which ensure desired properties of composite materials, can be determined in computational experiments. The subject of this book is the computational analysis of interrelations between mechanical properties (e.g., strength, damage resistance stiffness) and microstructures of composites. The methods of mesomechanics of composites are reviewed, and applied to the modelling of the mechanical behaviour of different groups of composites. Individual chapters are devoted to the computational analysis of the microstructure- mechanical properties relationships of particle reinforced composites, functionally graded and particle clusters reinforced composites, interpenetrating phase and unidirectional fiber reinforced composites, and machining tools materials.
The book analyzes a quasi-static fracture process in concrete and reinforced concrete by means of constitutive models formulated within continuum mechanics. A continuous and discontinuous modelling approach was used. Using a continuous approach, numerical analyses were performed using a finite element method and four different enhanced continuum models: isotropic elasto-plastic, isotropic damage and anisotropic smeared crack one. The models were equipped with a characteristic length of micro-structure by means of a non-local and a second-gradient theory. So they could properly describe the formation of localized zones with a certain thickness and spacing and a related deterministic size effect. Using a discontinuous FE approach, numerical results of cracks using a cohesive crack model and XFEM were presented which were also properly regularized. Finite element analyses were performed with concrete elements under monotonic uniaxial compression, uniaxial tension, bending and shear-extension. Concrete beams under cyclic loading were also simulated using a coupled elasto-plastic-damage approach. Numerical simulations were performed at macro- and meso-level of concrete. A stochastic and deterministic size effect was carefully investigated. In the case of reinforced concrete specimens, FE calculations were carried out with bars, slender and short beams, columns, corbels and tanks. Tensile and shear failure mechanisms were studied. Numerical results were compared with results from corresponding own and known in the scientific literature laboratory and full-scale tests.