Download Free Cohesive Modeling Of Fracture In Functionally Graded Materials Book in PDF and EPUB Free Download. You can read online Cohesive Modeling Of Fracture In Functionally Graded Materials and write the review.

Presenting original results from both theoretical and numerical viewpoints, this text offers a detailed discussion of the variational approach to brittle fracture. This approach views crack growth as the result of a competition between bulk and surface energy, treating crack evolution from its initiation all the way to the failure of a sample. The authors model crack initiation, crack path, and crack extension for arbitrary geometries and loads.
Scientific research on functionally graded materials (FGM's) looks at functions of gradients in materials comprising thermodynamic, mechanical, chemical, optical, electromagnetic, and/or biological aspects. This collection of technical papers represents current research interests with regard to the fracture behaviour of FGM's. The papers provide a balance between theoretical, computational, and experimental techniques. It also indicates areas for increased development, such as constraint effects, full experimental characterization of engineering FGM's under static and dynamic loading, development of fracture criteria with predictive capability, multiphysics and multiscale failure considerations, and connection of research with industrial applications.
Despite tremendous advances made in fracture mechanics of concrete in recent years, very little information has been available on the nature of fracture processes and on reliable test methods for determining parameters for the different models. Moreover, most texts on this topic discuss numerical modeling but fail to consider experimentation. This book fills these gaps and synthesizes progress in the field in a simple, straightforward manner geared to practical applications.
From a leading expert in fracture mechanics, this text provides new approaches and new applications to advance the understanding of crack formation and propagation.
Mechanical responses of solid materials are governed by their material properties. The solutions for estimating and predicting the mechanical responses are extremely difficult, in particular for non-homogeneous materials. Among these, there is a special type of materials whose properties are variable only along one direction, defined as graded materials or functionally graded materials (FGMs). Examples are plant stems and bones. Artificial graded materials are widely used in mechanical engineering, chemical engineering, biological engineering, and electronic engineering. This work covers and develops boundary element methods (BEM) to investigate the properties of realistic graded materials. It is a must have for practitioners and researchers in materials science, both academic and in industry. Covers analysis of properties of graded materials. Presents solutions based methods for analysis of fracture mechanics. Presents two types of boundary element methods for layered isotropic materials and transversely isotropic materials. Written by two authors with extensive international experience in academic and private research and engineering.
Mechanics of Functionally Graded Material Structures is an authoritative and fresh look at various functionally graded materials, customizing them with various structures. The book is devoted to tailoring material properties to the needed structural performance. The authors pair materials with the appropriate structures based upon their purpose and use.Material grading of structures depending upon thickness, axial and polar directions are discussed. Three dimensional analysis of rectangular plates made of functional graded materials and vibrational tailoring of inhomogeneous beams and circular plates are both covered in great detail. The authors derive novel closed form solutions that can serve as benchmarks that numerical solutions can be compared to. These are published for the first time in the literature. This is a unique book that gives the first exposition of the effects of various grading mechanisms on the structural behavior as well as taking into account vibrations and buckling.
An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.
Fracture and Size Effect in Concrete and Other Quasibrittle Materials is the first in-depth text on the application of fracture mechanics to the analysis of failure in concrete structures. The book synthesizes a vast number of recent research results in the literature to provide a comprehensive treatment of the topic that does not give merely the facts - it provides true understanding. The many recent results on quasibrittle fracture and size effect, which were scattered throughout many periodicals, are compiled here in a single volume. This book presents a well-rounded discussion of the theory of size effect and scaling of failure loads in structures. The size effect, which is the most important practical manifestation of fracture behavior, has become a hot topic. It has gained prominence in current research on concrete and quasibrittle materials. The treatment of every subject in Fracture and Size Effect in Concrete and Other Quasibrittle Materials proceeds from simple to complex, from specialized to general, and is as concise as possible using the simplest level of mathematics necessary to treat the subject clearly and accurately. Whether you are an engineering student or a practicing engineer, this book provides you with a clear presentation, including full derivations and examples, from which you can gain real understanding of fracture and size effect in concrete and other quasibrittle materials.
The Springer Handbook of Experimental Solid Mechanics documents both the traditional techniques as well as the new methods for experimental studies of materials, components, and structures. The emergence of new materials and new disciplines, together with the escalating use of on- and off-line computers for rapid data processing and the combined use of experimental and numerical techniques have greatly expanded the capabilities of experimental mechanics. New exciting topics are included on biological materials, MEMS and NEMS, nanoindentation, digital photomechanics, photoacoustic characterization, and atomic force microscopy in experimental solid mechanics. Presenting complete instructions to various areas of experimental solid mechanics, guidance to detailed expositions in important references, and a description of state-of-the-art applications in important technical areas, this thoroughly revised and updated edition is an excellent reference to a widespread academic, industrial, and professional engineering audience.