Download Free Coherent Mimo Ofdm And Information Rates For Underwater Acoustic Communications Book in PDF and EPUB Free Download. You can read online Coherent Mimo Ofdm And Information Rates For Underwater Acoustic Communications and write the review.

A blend of introductory material and advanced signal processing and communication techniques, of critical importance to underwater system and network development This book, which is the first to describe the processing techniques central to underwater OFDM, is arranged into four distinct sections: First, it describes the characteristics of underwater acoustic channels, and stresses the difference from wireless radio channels. Then it goes over the basics of OFDM and channel coding. The second part starts with an overview of the OFDM receiver, and develops various modules for the receiver design in systems with single or multiple transmitters. This is the main body of the book. Extensive experimental data sets are used to verify the receiver performance. In the third part, the authors discuss applications of the OFDM receiver in i) deep water channels, which may contain very long separated multipath clusters, ii) interference-rich environments, where an unintentional interference such as Sonar will be present, and iii) a network with multiple users where both non-cooperative and cooperative underwater communications are developed. Lastly, it describes the development of a positioning system with OFDM waveforms, and the progress on the OFDM modem development. Closely related industries include the development and manufacturing of autonomous underwater vehicles (AUVs) and scientific sensory equipment. AUVs and sensors in the future could integrate modems, based on the OFDM technology described in this book. Contents includes: Underwater acoustic channel characteristics/OFDM basics/Peak-to-average-ratio control/Detection and Doppler estimation (Doppler scale and CFO)/Channel estimation and noise estimation/A block-by-block progressive receiver and performance results/Extensions to multi-input multi-output OFDM/Receiver designs for multiple users/Cooperative underwater OFDM (Physical layer network coding and dynamic coded cooperation)/Localization with OFDM waveforms/Modem developments A valuable resource for Graduate and postgraduate students on electrical engineering or physics courses; electrical engineers, underwater acousticians, communications engineers
Our research focuses on the horizontal underwater acoustic communications. For high data rate applications, such as image transmission or multiuser networks at long ranges. coherent underwater acoustic communication is of great importance. In this direction, we consider multi-input multi-output (MIMO) transmit beamforming under the uniform elemental power constraint. This is a non-convex optimization problem, and the optimal transmit beamformer is usually difficult to construct. We will first find a beamforming solution in an ideal setup. and then consider practical finite-rate feedback methods required to implement the transmit beamforming. On the other hand, the highly time-varying and frequency-selective underwater acoustic channel consists of a great challenge for channel estimators necessary for coherent communications. Such difficulty is aggravated when multiple transducers and/or hydrophones are deployed. Therefore, we also investigate differential MIMO transmission and reception approaches tailored for doubly-selective MIMO channels. To enhance the system error performance. we notice that the three-dimensional space-time-frequency variation of the underwater channel can be exploited to provide three-dimensional diversity gain. Based on all these, we also develop a differential MIMO transceiver tailored for doubly-selective underwater channels.
Following underwater acoustic channel modeling, this book investigates the relationship between coherence time and transmission distances. It considers the power allocation issues of two typical transmission scenarios, namely short-range transmission and medium-long range transmission. For the former scenario, an adaptive system is developed based on instantaneous channel state information. The primary focus is on cooperative dual-hop orthogonal frequency division multiplexing (OFDM).This book includes the decomposed fountain codes designed to enable reliable communications with higher energy efficiency. It covers the Doppler Effect, which improves packet transmission reliability for effective low-complexity mirror-mapping-based intercarrier interference cancellation schemes capable of suppressing the intercarrier interference power level. Designed for professionals and researchers in the field of underwater acoustic communications, this book is also suitable for advanced-level students in electrical engineering or computer science.
In this thesis the physical layer design of broadband MIMO-OFDM communication systems is considered taking into account the realistic multipath radio channel. The main focus is made on examining a number of coherent and non-coherent MIMO techniques both analytically and via computer simulations. Several proposals are made to assist intelligent selection of MIMO precoding and decoding algorithms. Additionally two novel improved differential transmission schemes are presented and analyzed. In dieser Arbeit wird der Entwurf der physikalischen Schicht für breitbandige MIMO-OFDM Kommunikationssysteme betrachtet. Dazu werden realistische Funkkanalmodelle mit Mehrwegeausbreitung berücksichtigt. Ein wesentlicher Schwerpunkt der Arbeit liegt auf Untersuchungen zu kohärenten und nichtkohärenten MIMO-Techniken, die sowohl analytisch als auch mit Hilfe von Computersimulationen durchgeführt werden. Es werden verschiedene Vorschläge erarbeitet, wie eine intelligente Auswahl von MIMO-Techniken zur Vorcodierung sowie zur Decodierung getroffen werden kann. Darüber hinaus werden zwei neuartige, verbesserte differentielle Übertragungsverfahren vorgestellt und analysiert.
This book summarizes the latest research on cognitive network-layer methods and smart adaptive physical-layer methods in underwater networks. Underwater communication requires extendable and delay-tolerant underwater acoustic networks capable of supporting multiple frequency bands, data rates and transmission ranges. The book also discusses a suitable foreground communication stack for mixed mobile/static networks, a technology that requires adaptive physical layer waveforms and cognitive network strategies with underlying cooperative and non-cooperative robust processes. The goal is to arrive at a universally applicable standard in the area of Underwater Internet-of-Things [ISO/IEC 30140, 30142, 30143]. The book is the second spin-off of the research project RACUN, after the first RACUN-book "Underwater Acoustic Networking Techniques" (https://link.springer.com/book/10.1007%2F978-3-642-25224-2)
This handbook is the definitive reference for the interdisciplinary field that is ocean engineering. It integrates the coverage of fundamental and applied material and encompasses a diverse spectrum of systems, concepts and operations in the maritime environment, as well as providing a comprehensive update on contemporary, leading-edge ocean technologies. Coverage includes an overview on the fundamentals of ocean science, ocean signals and instrumentation, coastal structures, developments in ocean energy technologies and ocean vehicles and automation. It aims at practitioners in a range of offshore industries and naval establishments as well as academic researchers and graduate students in ocean, coastal, offshore and marine engineering and naval architecture. The Springer Handbook of Ocean Engineering is organized in five parts: Part A: Fundamentals, Part B: Autonomous Ocean Vehicles, Subsystems and Control, Part C: Coastal Design, Part D: Offshore Technologies, Part E: Energy Conversion
Digital Underwater Acoustic Communications focuses on describing the differences between underwater acoustic communication channels and radio channels, discusses loss of transmitted sound in underwater acoustic channels, describes digital underwater acoustic communication signal processing, and provides a comprehensive reference to digital underwater acoustic communication equipment. This book is designed to serve as a reference for postgraduate students and practicing engineers involved in the design and analysis of underwater acoustic communications systems as well as for engineers involved in underwater acoustic engineering. Introduces the basics of underwater acoustics, along with the advanced functionalities needed to achieve reliable communications in underwater environment Identifies challenges in underwater acoustic channels relative to radio channels, underwater acoustic propagation, and solutions Shows how multi-path structures can be thought of as time diversity signals Presents a new, robust signal processing system, and an advanced FH-SS system for multimedia underwater acoustic communications with moderate communication ranges (above 20km) and rates (above 600bps) Describes the APNFM system for underwater acoustic communication equipment (including both civil and military applications), to be employed in active sonar to improve its performance