Download Free Coherent Analytic Sheaves Book in PDF and EPUB Free Download. You can read online Coherent Analytic Sheaves and write the review.

... Je mehr ich tiber die Principien der Functionentheorie nachdenke - und ich thue dies unablassig -, urn so fester wird meine Uberzeugung, dass diese auf dem Fundamente algebraischer Wahrheiten aufgebaut werden muss (WEIERSTRASS, Glaubensbekenntnis 1875, Math. Werke II, p. 235). 1. Sheaf Theory is a general tool for handling questions which involve local solutions and global patching. "La notion de faisceau s'introduit parce qu'il s'agit de passer de donnees 'locales' a l'etude de proprietes 'globales'" [CAR], p. 622. The methods of sheaf theory are algebraic. The notion of a sheaf was first introduced in 1946 by J. LERAY in a short note Eanneau d'homologie d'une representation, C.R. Acad. Sci. 222, 1366-68. Of course sheaves had occurred implicitly much earlier in mathematics. The "Monogene analytische Functionen", which K. WEIERSTRASS glued together from "Func tionselemente durch analytische Fortsetzung", are simply the connected components of the sheaf of germs of holomorphic functions on a RIEMANN surface*'; and the "ideaux de domaines indetermines", basic in the work of K. OKA since 1948 (cf. [OKA], p. 84, 107), are just sheaves of ideals of germs of holomorphic functions. Highly original contributions to mathematics are usually not appreciated at first. Fortunately H. CARTAN immediately realized the great importance of LERAY'S new abstract concept of a sheaf. In the polycopied notes of his Semina ire at the E.N.S
Rapid developments in multivariable spectral theory have led to important and fascinating results which also have applications in other mathematical disciplines. In this book, various concepts from function theory and complex analytic geometry are drawn together to give a new approach to concrete spectral computations and give insights into new developments in the spectral theory of linear operators. Classical results from cohomology theory of Banach algebras, multidimensional spectral theory, and complex analytic geometry have been freshly interpreted using the language of homological algebra. The advantages of this approach are illustrated by a variety of examples, unexpected applications, and conceptually new ideas that should stimulate further research among mathematicians.
This text exposes the basic features of cohomology of sheaves and its applications. The general theory of sheaves is very limited and no essential result is obtainable without turn ing to particular classes of topological spaces. The most satis factory general class is that of locally compact spaces and it is the study of such spaces which occupies the central part of this text. The fundamental concepts in the study of locally compact spaces is cohomology with compact support and a particular class of sheaves,the so-called soft sheaves. This class plays a double role as the basic vehicle for the internal theory and is the key to applications in analysis. The basic example of a soft sheaf is the sheaf of smooth functions on ~n or more generally on any smooth manifold. A rather large effort has been made to demon strate the relevance of sheaf theory in even the most elementary analysis. This process has been reversed in order to base the fundamental calculations in sheaf theory on elementary analysis.
This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.
The purpose of this book is to present the classical analytic function theory of several variables as a standard subject in a course of mathematics after learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert–Remmert's two volumes, GL227(236) (Theory of Stein spaces) and GL265 (Coherent analytic sheaves) with a lowering of the level for novice graduate students (here, Grauert's direct image theorem is limited to the case of finite maps).The core of the theory is "Oka's Coherence", found and proved by Kiyoshi Oka. It is indispensable, not only in the study of complex analysis and complex geometry, but also in a large area of modern mathematics. In this book, just after an introductory chapter on holomorphic functions (Chap. 1), we prove Oka's First Coherence Theorem for holomorphic functions in Chap. 2. This defines a unique character of the book compared with other books on this subject, in which the notion of coherence appears much later.The present book, consisting of nine chapters, gives complete treatments of the following items: Coherence of sheaves of holomorphic functions (Chap. 2); Oka–Cartan's Fundamental Theorem (Chap. 4); Coherence of ideal sheaves of complex analytic subsets (Chap. 6); Coherence of the normalization sheaves of complex spaces (Chap. 6); Grauert's Finiteness Theorem (Chaps. 7, 8); Oka's Theorem for Riemann domains (Chap. 8). The theories of sheaf cohomology and domains of holomorphy are also presented (Chaps. 3, 5). Chapter 6 deals with the theory of complex analytic subsets. Chapter 8 is devoted to the applications of formerly obtained results, proving Cartan–Serre's Theorem and Kodaira's Embedding Theorem. In Chap. 9, we discuss the historical development of "Coherence".It is difficult to find a book at this level that treats all of the above subjects in a completely self-contained manner. In the present volume, a number of classical proofs are improved and simplified, so that the contents are easily accessible for beginning graduate students.
In recent years new topological methods, especially the theory of sheaves founded by J. LERAY, have been applied successfully to algebraic geometry and to the theory of functions of several complex variables. H. CARTAN and J. -P. SERRE have shown how fundamental theorems on holomorphically complete manifolds (STEIN manifolds) can be for mulated in terms of sheaf theory. These theorems imply many facts of function theory because the domains of holomorphy are holomorphically complete. They can also be applied to algebraic geometry because the complement of a hyperplane section of an algebraic manifold is holo morphically complete. J. -P. SERRE has obtained important results on algebraic manifolds by these and other methods. Recently many of his results have been proved for algebraic varieties defined over a field of arbitrary characteristic. K. KODAIRA and D. C. SPENCER have also applied sheaf theory to algebraic geometry with great success. Their methods differ from those of SERRE in that they use techniques from differential geometry (harmonic integrals etc. ) but do not make any use of the theory of STEIN manifolds. M. F. ATIYAH and W. V. D. HODGE have dealt successfully with problems on integrals of the second kind on algebraic manifolds with the help of sheaf theory. I was able to work together with K. KODAIRA and D. C. SPENCER during a stay at the Institute for Advanced Study at Princeton from 1952 to 1954.
The purpose of this book is to present the available (sometimes only partial) solutions to the two fundamental problems: the existence problem and the classification problem for holomorphic structures in a given topological vector bundle over a compact complex surface. Special features of the nonalgebraic surfaces case, like irreducible vector bundles and stability with respect to a Gauduchon metric, are considered. The reader requires a grounding in geometry at graduate student level. The book will be of interest to graduate students and researchers in complex, algebraic and differential geometry.
This book is devoted to the interplay between complex and symplectic geometry in affine complex manifolds. Affine complex (a.k.a. Stein) manifolds have canonically built into them symplectic geometry which is responsible for many phenomena in complex geometry and analysis. The goal of the book is the exploration of this symplectic geometry (the road from 'Stein to Weinstein') and its applications in the complex geometric world of Stein manifolds (the road 'back').
Moduli Theory is one of those areas of Mathematics that has fascinated minds from classical to modern times. This has been so because it reveals beautiful Geometry naturally hidden in questions involving classification of geometric objects and because of the profound use of the methods of several areas of Mathematics like Algebra, Number Theory, Topology and Analysis to achieve this revelation. A study of Moduli Theory would therefore give senior undergraduate and graduate students an integrated view of Mathematics. The present book is a humble introduction to some aspects of Moduli Theory.