Download Free Cognitive Computing Theory And Applications Book in PDF and EPUB Free Download. You can read online Cognitive Computing Theory And Applications and write the review.

Cognitive Computing: Theory and Applications, written by internationally renowned experts, focuses on cognitive computing and its theory and applications, including the use of cognitive computing to manage renewable energy, the environment, and other scarce resources, machine learning models and algorithms, biometrics, Kernel Based Models for transductive learning, neural networks, graph analytics in cyber security, neural networks, data driven speech recognition, and analytical platforms to study the brain-computer interface. - Comprehensively presents the various aspects of statistical methodology - Discusses a wide variety of diverse applications and recent developments - Contributors are internationally renowned experts in their respective areas
This edited book designs the Cognitive Computing in Human Cognition to analyze to improve the efficiency of decision making by cognitive intelligence. The book is also intended to attract the audience who work in brain computing, deep learning, transportation, and solar cell energy. Due to this in the recent era, smart methods with human touch called as human cognition is adopted by many researchers in the field of information technology with the Cognitive Computing.
Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries, including business and healthcare. It is necessary to develop specific software programs that can analyze and interpret large amounts of data quickly in order to ensure adequate usage and predictive results. Cognitive Analytics: Concepts, Methodologies, Tools, and Applications provides emerging perspectives on the theoretical and practical aspects of data analysis tools and techniques. It also examines the incorporation of pattern management as well as decision-making and prediction processes through the use of data management and analysis. Highlighting a range of topics such as natural language processing, big data, and pattern recognition, this multi-volume book is ideally designed for information technology professionals, software developers, data analysts, graduate-level students, researchers, computer engineers, software engineers, IT specialists, and academicians.
The first textbook to teach students how to build data analytic solutions on large data sets using cloud-based technologies. This is the first textbook to teach students how to build data analytic solutions on large data sets (specifically in Internet of Things applications) using cloud-based technologies for data storage, transmission and mashup, and AI techniques to analyze this data. This textbook is designed to train college students to master modern cloud computing systems in operating principles, architecture design, machine learning algorithms, programming models and software tools for big data mining, analytics, and cognitive applications. The book will be suitable for use in one-semester computer science or electrical engineering courses on cloud computing, machine learning, cloud programming, cognitive computing, or big data science. The book will also be very useful as a reference for professionals who want to work in cloud computing and data science. Cloud and Cognitive Computing begins with two introductory chapters on fundamentals of cloud computing, data science, and adaptive computing that lay the foundation for the rest of the book. Subsequent chapters cover topics including cloud architecture, mashup services, virtual machines, Docker containers, mobile clouds, IoT and AI, inter-cloud mashups, and cloud performance and benchmarks, with a focus on Google's Brain Project, DeepMind, and X-Lab programs, IBKai HwangM SyNapse, Bluemix programs, cognitive initiatives, and neurocomputers. The book then covers machine learning algorithms and cloud programming software tools and application development, applying the tools in machine learning, social media, deep learning, and cognitive applications. All cloud systems are illustrated with big data and cognitive application examples.
Communication and network technology has witnessed recent rapid development and numerous information services and applications have been developed globally. These technologies have high impact on society and the way people are leading their lives. The advancement in technology has undoubtedly improved the quality of service and user experience yet a lot needs to be still done. Some areas that still need improvement include seamless wide-area coverage, high-capacity hot-spots, low-power massive-connections, low-latency and high-reliability and so on. Thus, it is highly desirable to develop smart technologies for communication to improve the overall services and management of wireless communication. Machine learning and cognitive computing have converged to give some groundbreaking solutions for smart machines. With these two technologies coming together, the machines can acquire the ability to reason similar to the human brain. The research area of machine learning and cognitive computing cover many fields like psychology, biology, signal processing, physics, information theory, mathematics, and statistics that can be used effectively for topology management. Therefore, the utilization of machine learning techniques like data analytics and cognitive power will lead to better performance of communication and wireless systems.
Cognitive Informatics, Computer Modelling, and Cognitive Science: Theory, Case Studies, and Applications presents the theoretical background and history of cognitive science to help readers understand its foundations, philosophical and psychological aspects, and applications in a wide range of engineering and computer science case studies. Cognitive science, a cognitive model of the brain, knowledge representation, and information processing in the human brain are discussed, as is the theory of consciousness, neuroscience, intelligence, decision-making, mind and behavior analysis, and the various ways cognitive computing is used for information manipulation, processing and decision-making. Mathematical and computational models, structures and processes of the human brain are also covered, along with advances in machine learning, artificial intelligence, cognitive knowledge base, deep learning, cognitive image processing and suitable data analytics.
Understand, design, and create cognitive applications using Watson’s suite of APIs. Key FeaturesDevelop your skills and work with IBM Watson APIs to build efficient and powerful cognitive appsLearn how to build smart apps to carry out different sets of activities using real-world use casesGet well versed with the best practices of IBM Watson and implement them in your daily workBook Description Cognitive computing is rapidly infusing every aspect of our lives riding on three important fields: data science, machine learning (ML), and artificial intelligence (AI). It allows computing systems to learn and keep on improving as the amount of data in the system grows. This book introduces readers to a whole new paradigm of computing – a paradigm that is totally different from the conventional computing of the Information Age. You will learn the concepts of ML, deep learning (DL), neural networks, and AI through the set of APIs provided by IBM Watson. This book will help you build your own applications to understand, plan, and solve problems, and analyze them as per your needs. You will learn about various domains of cognitive computing, such as NLP, voice processing, computer vision, emotion analytics, and conversational systems, using different IBM Watson APIs. From this, the reader will learn what ML is, and what goes on in the background to make computers "do their magic," as well as where these concepts have been applied. Having achieved this, the readers will then be able to embark on their journey of learning, researching, and applying the concept in their respective fields. What you will learnGet well versed with the APIs provided by IBM Watson on IBM CloudLearn ML, AI, cognitive computing, and neural network principlesImplement smart applications in fields such as healthcare, entertainment, security, and moreUnderstand unstructured content using cognitive metadata with the help of Natural Language UnderstandingUse Watson’s APIs to create real-life applications to realize their capabilitiesDelve into various domains of cognitive computing, such as media analytics, embedded deep learning, computer vision, and moreWho this book is for This book is for beginners and novices; having some knowledge about artificial intelligence and deep learning is an advantage, but not a prerequisite to benefit from this book. We explain the concept of deep learning and artificial intelligence through the set of tools IBM Watson provides.
Cognitive Informatics, Computer Modelling, and Cognitive Science: Volume Two, Application to Neural Engineering, Robotics, and STEM presents the practical, real-world applications of Cognitive Science to help readers understand how it can help them in their research, engineering and academic pursuits. The book is presented in two volumes, covering Introduction and Theoretical Background, Philosophical and Psychological Theory, and Cognitive Informatics and Computing. Volume Two includes Statistics for Cognitive Science, Cognitive Applications and STEM Case Studies. Other sections cover Cognitive Informatics, Computer Modeling and Cognitive Science: Application to Neural Engineering, Robotics, and STEM. The book's authors discuss the current status of research in the field of Cognitive Science, including cognitive language processing that paves the ways for developing numerous tools for helping physically challenged persons, and more. - Identifies how foundational theories and concepts in cognitive science are applicable in other fields - Includes a comprehensive review of cognitive science applications in multiple domains, applying it to neural engineering, robotics, computer science and STEM - Presents basic statistics and cognitive maps, testing strategies of hypothesis, maximum likelihood estimator, Bayesian statistics, and discrete probability models of neural computation - Contains in-depth technical coverage of cognitive applications and case studies, including neuro-computing, brain modeling, cognitive ability and cognitive robots
This volume contains the proceedings of the 4th International Conference on Frontier Computing (FC 2015), Bangkok, Thailand, September 9-11, 2015, and brings together state-of-the-art results covering many aspects of emerging computer science and information technology from international academic and industrial researchers. FC 2015 aimed at providing an open forum to reach a comprehensive understanding of the recent advances and developing trends in information technology, computer science and engineering, with themes under the scope of communication networks, business intelligence and knowledge management, web intelligence, and any related fields that prompt the development of information technology. Contributions cover a wide spectrum of topics: database and data mining, networking and communications, web and internet of things, embedded system, soft computing, social network analysis, security and privacy, optics communication, and ubiquitous/pervasive computing. Many papers have shown great academic potential and value, and in addition indicate promising directions of research in the focused realm of this conference series. Readers, including students, researchers, and industry professionals, will benefit from the results presented in this book, and it provides indicators for emerging trends for those starting their research careers.
This book presents original research works by researchers, engineers and practitioners in the field of artificial intelligence and cognitive computing. The book is divided into two parts, the first of which focuses on artificial intelligence (AI), knowledge representation, planning, learning, scheduling, perception-reactive AI systems, evolutionary computing and other topics related to intelligent systems and computational intelligence. In turn, the second part focuses on cognitive computing, cognitive science and cognitive informatics. It also discusses applications of cognitive computing in medical informatics, structural health monitoring, computational intelligence, intelligent control systems, bio-informatics, smart manufacturing, smart grids, image/video processing, video analytics, medical image and signal processing, and knowledge engineering, as well as related applications.