Download Free Coding And Cryptology Book in PDF and EPUB Free Download. You can read online Coding And Cryptology and write the review.

The inaugural research program of the Institute for Mathematical Sciences at the National University of Singapore took place from July to December 2001 and was devoted to coding theory and cryptology. As part of the program, tutorials for graduate students and junior researchers were given by world-renowned scholars. These tutorials covered fundamental aspects of coding theory and cryptology and were designed to prepare for original research in these areas. The present volume collects the expanded lecture notes of these tutorials. The topics range from mathematical areas such as computational number theory, exponential sums and algebraic function fields through coding-theory subjects such as extremal problems, quantum error-correcting codes and algebraic-geometry codes to cryptologic subjects such as stream ciphers, public-key infrastructures, key management, authentication schemes and distributed system security.
Containing data on number theory, encryption schemes, and cyclic codes, this highly successful textbook, proven by the authors in a popular two-quarter course, presents coding theory, construction, encoding, and decoding of specific code families in an "easy-to-use" manner appropriate for students with only a basic background in mathematics offering revised and updated material on the Berlekamp-Massey decoding algorithm and convolutional codes. Introducing the mathematics as it is needed and providing exercises with solutions, this edition includes an extensive section on cryptography, designed for an introductory course on the subject.
This unique book explains the basic issues of classical and modern cryptography, and provides a self contained essential mathematical background in number theory, abstract algebra, and probability--with surveys of relevant parts of complexity theory and other things. A user-friendly, down-to-earth tone presents concretely motivated introductions to these topics. More detailed chapter topics include simple ciphers; applying ideas from probability; substitutions, transpositions, permutations; modern symmetric ciphers; the integers; prime numbers; powers and roots modulo primes; powers and roots for composite moduli; weakly multiplicative functions; quadratic symbols, quadratic reciprocity; pseudoprimes; groups; sketches of protocols; rings, fields, polynomials; cyclotomic polynomials, primitive roots; pseudo-random number generators; proofs concerning pseudoprimality; factorization attacks finite fields; and elliptic curves. For personnel in computer security, system administration, and information systems.
Boolean functions are essential to systems for secure and reliable communication. This comprehensive survey of Boolean functions for cryptography and coding covers the whole domain and all important results, building on the author's influential articles with additional topics and recent results. A useful resource for researchers and graduate students, the book balances detailed discussions of properties and parameters with examples of various types of cryptographic attacks that motivate the consideration of these parameters. It provides all the necessary background on mathematics, cryptography, and coding, and an overview on recent applications, such as side channel attacks on smart cards, cloud computing through fully homomorphic encryption, and local pseudo-random generators. The result is a complete and accessible text on the state of the art in single and multiple output Boolean functions that illustrates the interaction between mathematics, computer science, and telecommunications.
Coding theory and cryptography allow secure and reliable data transmission, which is at the heart of modern communication. Nowadays, it is hard to find an electronic device without some code inside. Gröbner bases have emerged as the main tool in computational algebra, permitting numerous applications, both in theoretical contexts and in practical situations. This book is the first book ever giving a comprehensive overview on the application of commutative algebra to coding theory and cryptography. For example, all important properties of algebraic/geometric coding systems (including encoding, construction, decoding, list decoding) are individually analysed, reporting all significant approaches appeared in the literature. Also, stream ciphers, PK cryptography, symmetric cryptography and Polly Cracker systems deserve each a separate chapter, where all the relevant literature is reported and compared. While many short notes hint at new exciting directions, the reader will find that all chapters fit nicely within a unified notation.
This text is for a course in cryptography for advanced undergraduate and graduate students. Material is accessible to mathematically mature students having little background in number theory and computer programming. Core material is treated in the first eight chapters on areas such as classical cryptosystems, basic number theory, the RSA algorithm, and digital signatures. The remaining nine chapters cover optional topics including secret sharing schemes, games, and information theory. Appendices contain computer examples in Mathematica, Maple, and MATLAB. The text can be taught without computers.
This well-balanced text touches on theoretical and applied aspects of protecting digital data. The reader is provided with the basic theory and is then shown deeper fascinating detail, including the current state of the art. Readers will soon become familiar with methods of protecting digital data while it is transmitted, as well as while the data is being stored. Both basic and advanced error-correcting codes are introduced together with numerous results on their parameters and properties. The authors explain how to apply these codes to symmetric and public key cryptosystems and secret sharing. Interesting approaches based on polynomial systems solving are applied to cryptography and decoding codes. Computer algebra systems are also used to provide an understanding of how objects introduced in the book are constructed, and how their properties can be examined. This book is designed for Masters-level students studying mathematics, computer science, electrical engineering or physics.
It has long been recognized that there are fascinating connections between cod ing theory, cryptology, and combinatorics. Therefore it seemed desirable to us to organize a conference that brings together experts from these three areas for a fruitful exchange of ideas. We decided on a venue in the Huang Shan (Yellow Mountain) region, one of the most scenic areas of China, so as to provide the additional inducement of an attractive location. The conference was planned for June 2003 with the official title Workshop on Coding, Cryptography and Combi natorics (CCC 2003). Those who are familiar with events in East Asia in the first half of 2003 can guess what happened in the end, namely the conference had to be cancelled in the interest of the health of the participants. The SARS epidemic posed too serious a threat. At the time of the cancellation, the organization of the conference was at an advanced stage: all invited speakers had been selected and all abstracts of contributed talks had been screened by the program committee. Thus, it was de cided to call on all invited speakers and presenters of accepted contributed talks to submit their manuscripts for publication in the present volume. Altogether, 39 submissions were received and subjected to another round of refereeing. After care ful scrutiny, 28 papers were accepted for publication.
This book constitutes the proceedings of the First International Conference on Codes, Cryptology and Information Security, C2SI 2015, held in Rabat, Morocco, in May 2015. The 22 regular papers presented together with 8 invited talks were carefully reviewed and selected from 59 submissions. The first aim of this conference is to pay homage to Thierry Berger for his valuable contribution in teaching and disseminating knowledge in coding theory and cryptography in Morocco since 2003. The second aim of the conference is to provide an international forum for researchers from academia and practitioners from industry from all over the world for discussion of all forms of cryptology, coding theory and information security.
This book constitutes the proceedings of the Third International Conference on Codes, Cryptology and Information Security, C2SI 2019, held in Rabat, Morocco, in April 2019. The 19 regular papers presented together with 5 invited talks were carefully reviewed and selected from 90 submissions. The first aim of this conference is to pay homage to Said El Hajji for his valuable contribution in research, teaching and disseminating knowledge in numerical analysis, modeling and information security in Morocco, Africa, and worldwide. The second aim of the conference is to provide an international forum for researchers from academia and practitioners from industry from all over the world for discussion of all forms of cryptology, coding theory, and information security.