Download Free Code Of The Ants Problem Book in PDF and EPUB Free Download. You can read online Code Of The Ants Problem and write the review.

This book constitutes the refereed proceedings of the IFIP-TC6 4th International Working Conference on Active Networks, IWAN 2002, held in Zurich, Switzerland, in December 2002. The 20 revised full papers presented were carefully reviewed and selected from 53 submissions. Among the topics addressed are router architectures, reconfigurable systems, NodeOS, service deployment, active network services, active network queries, network management agents, active network performance, mobile communications, programmable networks, network execution environments, active network architecture, group communication, peer-to-peer networks, and interaction detection.
This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.
An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.
Edited by professionals with years of experience, this book provides an introduction to the theory of evolutionary algorithms and single- and multi-objective optimization, and then goes on to discuss to explore applications of evolutionary algorithms for many uses with real-world applications. Covering both the theory and applications of evolutionary computation, the book offers exhaustive coverage of several topics on nontraditional evolutionary techniques, details working principles of new and popular evolutionary algorithms, and discusses case studies on both scientific and real-world applications of optimization
This book provides a compilation on the state-of-the-art and recent advances of evolutionary computation for dynamic optimization problems. The motivation for this book arises from the fact that many real-world optimization problems and engineering systems are subject to dynamic environments, where changes occur over time. Key issues for addressing dynamic optimization problems in evolutionary computation, including fundamentals, algorithm design, theoretical analysis, and real-world applications, are presented. "Evolutionary Computation for Dynamic Optimization Problems" is a valuable reference to scientists, researchers, professionals and students in the field of engineering and science, particularly in the areas of computational intelligence, nature- and bio-inspired computing, and evolutionary computation.
Issues in Artificial Intelligence, Robotics and Machine Learning: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Artificial Intelligence, Robotics and Machine Learning. The editors have built Issues in Artificial Intelligence, Robotics and Machine Learning: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Artificial Intelligence, Robotics and Machine Learning in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Artificial Intelligence, Robotics and Machine Learning: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
The four-volume set LNCS 7333-7336 constitutes the refereed proceedings of the 12th International Conference on Computational Science and Its Applications, ICCSA 2012, held in Salvador de Bahia, Brazil, in June 2012. The four volumes contain papers presented in the following workshops: 7333 - advances in high performance algorithms and applications (AHPAA); bioinspired computing and applications (BIOCA); computational geometry and applicatons (CGA); chemistry and materials sciences and technologies (CMST); cities, technologies and planning (CTP); 7334 - econometrics and multidimensional evaluation in the urban environment (EMEUE); geographical analysis, urban modeling, spatial statistics (Geo-An-Mod); 7335 - optimization techniques and applications (OTA); mobile communications (MC); mobile-computing, sensind and actuation for cyber physical systems (MSA4CPS); remote sensing (RS); 7336 - software engineering processes and applications (SEPA); software quality (SQ); security and privacy in computational sciences (SPCS); soft computing and data engineering (SCDE). The topics of the fully refereed papers are structured according to the four major conference themes: 7333 - computational methods, algorithms and scientific application; 7334 - geometric modelling, graphics and visualization; 7335 - information systems and technologies; 7336 - high performance computing and networks.
A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings. This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists. Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button. The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches.