Download Free Coastal Processes With Engineering Applications Book in PDF and EPUB Free Download. You can read online Coastal Processes With Engineering Applications and write the review.

Text on coastal engineering and oceanography covering theory and applications intended to mitigate shoreline erosion.
Features concepts in coastal engineering and their application to coastal processes and disaster prevention works. This title describes basic concepts of coastal engineering, dealing mainly with wave-induced physical problems. It consists of the author's results of 30 years' scientific research on the progress of coastal sediment transport study.
This book provides us with important concepts in coastal engineering, their applications to coastal processes and disaster prevention works. It is designed for graduate students pursuing advanced studies in coastal processes and for engineers and managers of coastal zone management. The first part describes basic concepts of coastal engineering, dealing mainly with wave-induced physical problems in the field of coastal engineering and hydraulics. The second part consists of the author's results of 30 years of scientific research on the progress of coastal sediment transport and coastal disasters. In terms of sediment transport study, the book covers not only coastal zones but also sediment production in river basins and river sediment transport to understand the present reasons for coastal erosion. A number of case studies for various countries around the world are given, and from the descriptions provided, it is possible to understand the different problems and challenges facing each country.
Much of the U.S. coastline is rapidly changingâ€"mostly eroding. That fact places increasing pressure on the planners and managers responsible for coastal development and protection, and could have a direct effect on many of the 125 million Americans living within 50 miles of the coast who rely on its resources and beaches for their livelihood or recreation. Although rapid advances have been made in the measurement systems needed to understand and describe the forces and changes at work in the surf-zone environment, their potential for allowing more accurate and reliable planning and engineering responses has not been fully realized. This book assesses coastal data needs, instrumentation, and analyses, and recommends areas in which more information or better instrumentation is needed.
The United Nations estimate that by 2004, in excess of 75% of the world's population will live within the coastal zone. These regions are therefore of critical importance to a majority of the world's citizens. The coastal zone provides important economic, transport, residential and recreational functions, all of which depend upon its physical characteristics, appealing landscape, cultural heritage, natural resources and rich marine and terrestrial biodiversity. This resource is thus the foundation for the well being and economic viability of present and future generations of coastal zone residents The pressure on coastal environments is also being exacerbated by rapid changes in global climate. The value of the coastal zone to humanity, and the enormous pressure on it, provide strong incentives for a greater scientific understanding which can ensure effective coastal engineering practice and efficient and sustainable management. Coastal Engineering: Processes, Theory and Design Practice is the only book providing a thorough introduction to all aspects of coastal processes, morphology and design of coastal defences. The use of detailed and state-of-the art modelling techniques are an important theme of this book, and there are numerous case studies showing actual examples where mathematical modelling has been applied through engineering judgement. With thorough coverage of the theory, and practical demonstration of the applications, Coastal Engineering: Processes, Theory and Design Practice is a must have for all students and engineers working in coastal management and engineering. .
Accompanying CD-ROM in pocket at the back of book
This book is an introductory treatment to coastal and estuarine processes for earth scientists or engineers. Suitable for a first course on the subject, it covers water waves, surf zone hydrodynamics, tides in oceans and estuaries, storm surges, estuarine mixing, basic sediment transport, coastal morphodynamics and coastal groundwater dynamics. The book contains a substantial amount of new material. For example, the explicit, analytical treatment of transient, forced long waves strongly enhances the discussion on tsunami, storm surges and surf beat. The treatment of turbulent mixing includes finite mixing length effects, which provide an explanation for differential diffusion of different sediment sizes in suspension. The recently discovered effects of acceleration skewness and boundary layer streaming are also included in the basic sediment transport models. In addition, the treatment of beach groundwater dynamics: The mechanisms by which waves as well as tides drive groundwater motion, builds the link between the previously unconnected fields of coastal hydraulics and regional groundwater modeling. To serve as an effective reference book for professionals, the book is fully indexed and comprehensively cross referenced.
This book discusses coastal defense measures, which have not improved in the past few decades, and better alternatives. It emphasizes on the existence of stable bays in coastal geomorphology and their use in coastal stabilization. The conventional measures for saving beaches, such as seawalls, groins, offshore breakwaters, and renourishment, are discussed in detail, followed by an alternative known as headland control. Many types of coast, and the respective defense measures, are discussed, especially for eroding beaches downcoast of harbors with long breakwaters. The formation of offshore bars during storms is examined and the design of stable recreational beaches is demonstrated. Practical design problems are discussed in all cases. Many issues requiring attention in coastal engineering are also outlined.
Laboratory physical models are a valuable tool for coastal engineers. Physical models help us to understand the complex hydrodynamic processes occurring in the nearshore zone and they provide reliable and economic engineering design solutions.This book is about the art and science of physical modeling as applied in coastal engineering. The aim of the book is to consolidate and synthesize into a single text much of the knowledge about physical modeling that has been developed worldwide.This book was written to serve as a graduate-level text for a course in physical modeling or as a reference text for engineers and researchers engaged in physical modeling and laboratory experimentation. The first three chapters serve as an introduction to similitude and physical models, covering topics such as advantages and disadvantages of physical models, systems of units, dimensional analysis, types of similitude and various hydraulic similitude criteria applicable to coastal engineering models.Practical application of similitude principles to coastal engineering studies is covered in Chapter 4 (Hydrodynamic Models), Chapter 5 (Coastal Structure Models) and Chapter 6 (Sediment Transport Models). These chapters develop the appropriate similitude criteria, discuss inherent laboratory and scale effects and overview the technical literature pertaining to these types of models. The final two chapters focus on the related subjects of laboratory wave generation (Chapter 7) and measurement and analysis techniques (Chapter 8).
Process-based morphodynamic modelling is one of the relatively new tools at the disposal of coastal scientists, engineers and managers. On paper, it offers the possibility to analyse morphological processes and to investigate the effects of various measures one might consider to alleviate some problems. For these to be applied in practice, a model should be relatively straightforward to set up. It should be accurate enough to represent the details of interest, it should run long enough and robustly to see the real effects happen, and the physical processes represented in such a way that the sediment generally goes in the right direction at the right rate. Next, practitioners must be able to judge if the patterns and outcomes of the model are realistic and finally, translate these colour pictures and vector plots to integrated parameters that are relevant to the client or end user. In a nutshell, this book provides an in-depth review of ways to model coastal processes, including many hands-on exercises.