Download Free Cmos Rf Modeling Characterization And Applications Book in PDF and EPUB Free Download. You can read online Cmos Rf Modeling Characterization And Applications and write the review.

CMOS technology has now reached a state of evolution, in terms of both frequency and noise, where it is becoming a serious contender for radio frequency (RF) applications in the GHz range. Cutoff frequencies of about 50 GHz have been reported for 0.18 æm CMOS technology, and are expected to reach about 100 GHz when the feature size shrinks to 100 nm within a few years. This translates into CMOS circuit operating frequencies well into the GHz range, which covers the frequency range of many of today's popular wireless products, such as cell phones, GPS (Global Positioning System) and Bluetooth. Of course, the great interest in RF CMOS comes from the obvious advantages of CMOS technology in terms of production cost, high-level integration, and the ability to combine digital, analog and RF circuits on the same chip. This book discusses many of the challenges facing the CMOS RF circuit designer in terms of device modeling and characterization, which are crucial issues in circuit simulation and design.
Bridges the gap between device modelling and analog circuit design. Includes dedicated software enabling actual circuit design. Covers the three significant models: BSIM3, Model 9 &, and EKV. Presents practical guidance on device development and circuit implementation. The authors offer a combination of extensive academic and industrial experience.
This book provides comprehensive knowledge, aimed at practicing integrated circuit design engineer or researcher, to learn and design a low noise amplifier (LNA) for single and multiband applications. The content is structured in a way so that even a beginner can follow the design method easily. This book features the following characteristics: different types of LNA designs (with key building blocks) are discussed, and detailed analysis is given for each LNA design, which covers from the fundamental and principal knowledge to the justification of the design approach. Detailed design approaches are using 180 nm and 130nm CMOS technologies, purposely presented in this manner to give exposure to the design of LNA under different technologies. The LNAs in this book are designed for GSM, WCDMA and WLAN standards, but the same method can be used for other frequencies of operation. Comprehensive analyses on the extreme or corner condition effects are highlighted. Besides, detailed derivation of equations relating to the parameters of the LNA’s performance metrics help LNA designers in understanding how the performance metrics of the LNA can be optimized to meet the desired specification. Electromagnetic analyses using Sonnet, an electromagnetic tool able to replace the conventional post-layout simulation with resistance and capacitance parasitic extraction for more accurate frequency performance prediction are presented. The electromagnetic method is proposed to be used in the LNA design as it can accurately predict the LNA’s performance before tape-out for first-pass fabrication. MATLAB codes are provided to generate important S-parameters and noise figure values.
This book provides the most comprehensive and in-depth coverage of the latest circuit design developments in RF CMOS technology. It is a practical and cutting-edge guide, packed with proven circuit techniques and innovative design methodologies for solving challenging problems associated with RF integrated circuits and systems. This invaluable resource features a collection of the finest design practices that may soon drive the system-on-chip revolution. Using this book's state-of-the-art design techniques, one can apply existing technologies in novel ways and to create new circuit designs for the future.
This book presents the material necessary for understanding the physics, operation, design, and performance of modern MOSFETs with nanometer dimensions. It offers a brief introduction to the field and a thorough overview of MOSFET physics, detailing the relevant basics. The authors apply presented models to calculate and demonstrate transistor characteristics, and they include required input data (e.g., dimensions, doping) enabling readers to repeat the calculations and compare their results. The book introduces conventional and novel advanced MOSFET concepts, such as multiple-gate structures or alternative channel materials. Other topics covered include high-k dielectrics and mobility enhancement techniques, MOSFETs for RF (radio frequency) applications, MOSFET fabrication technology.
This groundbreaking book is the first to give an introduction to microwave de-embedding, showing how it is the cornerstone for waveform engineering. The authors of each chapter clearly explain the theoretical concepts, providing a foundation that supports linear and non-linear measurements, modelling and circuit design. Recent developments and future trends in the field are covered throughout, including successful strategies for low-noise and power amplifier design. This book is a must-have for those wishing to understand the full potential of the microwave de-embedding concept to achieve successful results in the areas of measurements, modelling, and design at high frequencies. With this book you will learn: - The theoretical background of high-frequency de-embedding for measurements, modelling, and design - Details on applying the de-embedding concept to the transistor's linear, non-linear, and noise behaviour - The impact of de-embedding on low-noise and power amplifier design - The recent advances and future trends in the field of high-frequency de-embedding - Presents the theory and practice of microwave de-embedding, from the basic principles to recent advances and future trends - Written by experts in the field, all of whom are leading researchers in the area - Each chapter describes theoretical background and gives experimental results and practical applications - Includes forewords by Giovanni Ghione and Stephen Maas
Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. - Contributions from leading authorities - Informs and updates on all the latest developments in the field
The unique materials properties of GaN-based semiconductors have stimulated a great deal of interest in research and development regarding nitride materials growth and optoelectronic and nitride-based electronic devices. High electron mobility and saturation velocity, high sheet carrier concentration at heterojunction interfaces, high breakdown field, and low thermal impedance of GaN-based films grown over SiC or bulk AlN substrates make nitride-based electronic devices very promising. The chemical inertness of nitrides is another key property.This volume, written by experts on different aspects of nitride technology, addresses the entire spectrum of issues related to nitride materials and devices, and it will be useful for technologists, scientists, engineers, and graduate students who are working on wide bandgap materials and devices. The book can also be used as a supplementary text for graduate courses on wide bandgap semiconductor technology.
Precision Measurement of Microwave Comprehensive resource covering the foundations and analysis of precision noise measurements with a detailed treatment of their uncertainties Precision Measurement of Microwave Thermal Noise presents the basics of precise measurements of thermal noise at microwave frequencies and guides readers through how to evaluate the uncertainties in such measurement. The focus is on measurement methods used at the U.S. National Institute of Standards and Technology (NIST), but the general principles and methods are useful in a wide range of applications. Readers will learn how to perform accurate microwave noise measurements using the respected author’s expertise of calculations to aid understanding of the challenges and solutions. The text covers the background required for the analysis of the measurements and the standards employed to calibrate radiofrequency and microwave radiometers. It also covers measurements of noise temperature (power) and the noise characteristics of amplifiers and transistors. In addition to the usual room-temperature two-port devices, cryogenic devices and multiport amplifiers are also discussed. Finally, the connection of these lab-based measurements to remote-sensing measurement (especially from space) is considered, and possible contributions of the lab-based measurements to remote-sensing applications are discussed. Specific topics and concepts covered in the text include: Noise-temperature standards, covering ambient standards, hot (oven) standards, cryogenic standards, and other standards and noise sources Amplifier noise, covering definition of noise parameters, measurement of noise parameters, uncertainty analysis for noise-parameter measurements, and simulations and strategies On-wafer noise measurements, covering on-wafer microwave formalism, noise temperature, on-wafer noise-parameter measurements, and uncertainties Multiport amplifiers, covering formalism and noise matrix, definition of noise figure for multiports, and degradation of signal-to-noise ratio Containing some introductory material, Precision Measurement of Microwave Thermal Noise is an invaluable resource on the subject for advanced students and all professionals working in (or entering) the field of microwave noise measurements, be it in a standards lab, a commercial lab, or academic research.
Microelectronics is one of the most rapidly changing scientific fields today. The tendency to shrink devices as far as possible results in extremely small devices which can no longer be described using simple analytical models. This book covers various aspects of advanced device modeling and simulation. As such it presents extensive reviews and original research by outstanding scientists. The bulk of the book is concerned with the theory of classical and quantum-mechanical transport modeling, based on macroscopic, spherical harmonics and Monte Carlo methods.