Download Free Cloud Dynamics Book in PDF and EPUB Free Download. You can read online Cloud Dynamics and write the review.

Clouds play a critical role in the Earth's climate, general atmospheric circulation, and global water balance. Clouds are essential elements in mesoscale meteorology, atmospheric chemistry, air pollution, atmosphericradiation, and weather forecasting, and thus must be understood by any student or researcher in the atmospheric sciences.Cloud Dynamics provides a skillful and comprehensive examination of the nature of clouds--what they look like and why, how scientists observe them, and the basic dynamics and physics that underlie them. The book describes the mechanics governing each type of cloud that occurs in Earth's atmosphere, and the organization of various types of clouds in larger weather systems such as fronts, thunderstorms, and hurricanes.This book is aimed specifically at graduate students, advanced undergraduates, practicing researchers either already in atmospheric science or moving in from a related scientific field, and operational meteorologists. Some prior knowledge of atmospheric dynamics and physics is helpful, but a thorough overview of the necessary prerequisites is supplied. - Provides a complete treatment of clouds integrating the analysis of air motions with cloud structure, microphysics, and precipitation mechanics - Describes and explains the basic types of clouds and cloud systems that occur in the atmosphere-fog, stratus, stratocumulus, altocumulus, altostratus, cirrus, thunderstorms, tornadoes, waterspouts, orographically induced clouds, mesoscale convection complexes, hurricanes, fronts, and extratropical cyclones - Presents a photographic guide, presented in the first chapter, linking the examination of each type of cloud with an image to enhance visual retention and understanding - Summarizes the fundamentals, both observational and theoretical, of atmospheric dynamics, thermodynamics, cloud microphysics, and radar meteorology, allowing each type of cloud to be examined in depth - Integrates the latest field observations, numerical model simulations, and theory - Supplies a theoretical treatment suitable for the advanced undergraduate or graduate level
During recent decades a new field of study in atmospheric science has made its appearance - the dynamics of clouds. As the name implies, the subject matter of cloud dynamics includes the causes of cloud formation and the temporal development of clouds. At first, effort was concentrated mainly on devising models of the structure and development of convective clouds, and thus there exists considerable literature on this [9, 69, 88, 330, 411]. Although convective clouds are of great significance (thunder storm formation and very intense turbulence are associated with these clouds), they are observed much less frequently than other cloud types. For instance, the frequency of occurrence of strati form (frontal) clouds and wave clouds over the U.S.S.R. and Western Europe is more than 90% [2-4]. During the last 20 or 30 years there has been considerable success in studying the dynamics of stratiform clouds. Fundamental laws (equations) describing the formation, development, and dis sipation of these clouds (and also of fog) have been formulated, and also laws describing the formation of humidity and temperature fields in a turbulent medium. Hydrodynamic models of clouds and fog constructed on the basis of these equations have made it pos sible to formulate the fundamental regularities in the formation and evolution of large-scale cloud fields, and also to ascertain the structural features of clouds of various kinds. These topics are covered in Chapters 1-4 of this monograph.
Storm and Cloud Dynamics focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models. - Provides a complete treatment of clouds integrating the analysis of air motions with cloud structure, microphysics, and precipitation mechanics - Describes and explains the basic types of clouds and cloud systems that occur in the atmosphere-fog, stratus, stratocumulus, altocumulus, altostratus, cirrus, thunderstorms, tornadoes, waterspouts, orographically induced clouds, mesoscale convection complexes, hurricanes, fronts, and extratropical cyclones - Summarizes the fundamentals, both observational and theoretical, of atmospheric dynamics, thermodynamics, cloud microphysics, and radar meteorology, allowing each type of cloud to be examined in depth - Integrates the latest field observations, numerical model simulations, and theory - Supplies a theoretical treatment suitable for the advanced undergraduate or graduate level, as well as post-graduate
Clouds play a critical role in the Earth's climate, general atmospheric circulation, and global water balance. Clouds are essential elements in mesoscale meteorology, atmospheric chemistry, air pollution, atmosphericradiation, and weather forecasting, and thus must be understood by any student or researcher in the atmospheric sciences.Cloud Dynamics provides a skillful and comprehensive examination of the nature of clouds--what they look like and why, how scientists observe them, and the basic dynamics and physics that underlie them. The book describes the mechanics governing each type of cloud that occurs in Earth's atmosphere, and the organization of various types of clouds in larger weather systems such as fronts, thunderstorms, and hurricanes.This book is aimed specifically at graduate students, advanced undergraduates, practicing researchers either already in atmospheric science or moving in from a related scientific field, and operational meteorologists. Some prior knowledge of atmospheric dynamics and physics is helpful, but a thorough overview of the necessary prerequisites is supplied.Key Highlights of This TextProvides a complete treatment of clouds integrating the analysis of air motions with cloud structure, microphysics, and precipitation mechanicsDescribes and explains the basic types of clouds and cloud systems that occur in the atmosphere-fog, stratus, stratocumulus, altocumulus, altostratus, cirrus, thunderstorms, tornadoes, waterspouts, orographically induced clouds, mesoscale convection complexes, hurricanes, fronts, and extratropical cyclonesPresents a photographic guide, presented in the first chapter, linking the examination of each type of cloud with an image to enhance visual retention and understandingSummarizes the fundamentals, both observational and theoretical, of atmospheric dynamics, thermodynamics, cloud microphysics, and radar meteorology, allowing each type of cloud to be examined in depthIntegrates the latest field observations, numerical model simulations, and theorySupplies a theoretical treatment suitable for the advanced undergraduate or graduate level
Proceedings of a Symposium held at Third General Assembly of IAMAP, Hamburg, West Germany, 17-28 August, 1981
New textbook on microphysics, thermodynamics and cloud-scale dynamics of clouds and precipitation, for graduate and advanced undergraduate students, researchers and professionals.
An Introduction to Clouds provides a fundamental understanding of clouds, ranging from cloud microphysics to the large-scale impacts of clouds on climate. On the microscale, phase changes and ice nucleation are covered comprehensively, including aerosol particles and thermodynamics relevant for the formation of clouds and precipitation. At larger scales, cloud dynamics, mid-latitude storms and tropical cyclones are discussed leading to the role of clouds on the hydrological cycle and climate. Each chapter ends with problem sets and multiple-choice questions that can be completed online, and important equations are highlighted in boxes for ease of reference. Combining mathematical formulations with qualitative explanations of underlying concepts, this accessible book requires relatively little previous knowledge, making it ideal for advanced undergraduate and graduate students in atmospheric science, environmental sciences and related disciplines.
More than half the globe is covered by visible clouds.
This book focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models.