Download Free Closed Loop Performance Monitoring Book in PDF and EPUB Free Download. You can read online Closed Loop Performance Monitoring and write the review.

The Encyclopedia of Systems and Control collects a broad range of short expository articles that describe the current state of the art in the central topics of control and systems engineering as well as in many of the related fields in which control is an enabling technology. The editors have assembled the most comprehensive reference possible, and this has been greatly facilitated by the publisher’s commitment continuously to publish updates to the articles as they become available in the future. Although control engineering is now a mature discipline, it remains an area in which there is a great deal of research activity, and as new developments in both theory and applications become available, they will be included in the online version of the encyclopedia. A carefully chosen team of leading authorities in the field has written the well over 250 articles that comprise the work. The topics range from basic principles of feedback in servomechanisms to advanced topics such as the control of Boolean networks and evolutionary game theory. Because the content has been selected to reflect both foundational importance as well as subjects that are of current interest to the research and practitioner communities, a broad readership that includes students, application engineers, and research scientists will find material that is of interest.
A typical design procedure for model predictive control or control performance monitoring consists of: 1. identification of a parametric or nonparametric model; 2. derivation of the output predictor from the model; 3. design of the control law or calculation of performance indices according to the predictor. Both design problems need an explicit model form and both require this three-step design procedure. Can this design procedure be simplified? Can an explicit model be avoided? With these questions in mind, the authors eliminate the first and second step of the above design procedure, a “data-driven” approach in the sense that no traditional parametric models are used; hence, the intermediate subspace matrices, which are obtained from the process data and otherwise identified as a first step in the subspace identification methods, are used directly for the designs. Without using an explicit model, the design procedure is simplified and the modelling error caused by parameterization is eliminated.
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies. . . , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for widerand rapid dissemination. Benchmarking is a technique first applied by Rank Xerox in the late 1970s for business processes. As a subject in the commercial arena, benchmarking thrives with, for example, a European Benchmarking Forum. It has taken rather longer for benchmarking to make the transfer to the technical domain and even now the subject is making a slow headway. Akey research step in this direction was taken by Harris (1989) who used minimum variance control as a benchmark for controller loop assessment. This contribution opened up the area and a significant specialist literature has now developed. Significant support for the methodologywas given by Honeywell who have controller assessment routines in their process control applications software; therefore, it is timely to welcome a (first) monograph on controller performance assessment by Biao Huang and Sirish Shah to the Advances in Industrial Control series.
A typical design procedure for model predictive control or control performance monitoring consists of: 1. identification of a parametric or nonparametric model; 2. derivation of the output predictor from the model; 3. design of the control law or calculation of performance indices according to the predictor. Both design problems need an explicit model form and both require this three-step design procedure. Can this design procedure be simplified? Can an explicit model be avoided? With these questions in mind, the authors eliminate the first and second step of the above design procedure, a “data-driven” approach in the sense that no traditional parametric models are used; hence, the intermediate subspace matrices, which are obtained from the process data and otherwise identified as a first step in the subspace identification methods, are used directly for the designs. Without using an explicit model, the design procedure is simplified and the modelling error caused by parameterization is eliminated.
A three-volume work bringing together papers presented at 'SAFEPROCESS 2003', including four plenary papers on statistical, physical-model-based and logical-model-based approaches to fault detection and diagnosis, as well as 178 regular papers.
This book describes an innovative closed-loop concept that allows the feedback of online data from operational monitoring to create mining intelligence. The application of this concept promises significant improvements in economic and environmental key performance indicators for any mining operation. Combining theory with industrial case studies, the book guides readers through this process by providing theoretical background, addressing practical issues related to operational implementation, and illustrating the impact on selected examples. This new concept is presented using the example of a bulk and gold mining application, but is applicable at any mine where grade control is important. The book is of interest to industrial professionals involved in operational monitoring, mining intelligence, and mine planning optimization, as well as to researchers and academics in the field of applied geostatistics.
This book presents a comprehensive review of currently available Control Performance Assessment methods. It covers a broad range of classical and modern methods, with a main focus on assessment practice, and is intended to help practitioners learn and properly perform control assessment in the industrial reality. Further, it offers an educational guide for control engineers, who are currently in high demand in the industry. The book consists of three main parts. Firstly, a comprehensive review of available approaches is presented and discussed. The classical canon methods are extended with a discussion of nonlinear and complex alternative measures using non-Gaussian statistics, persistence and fractional calculations. Secondly, the methods’ applicability aspects are visualized with the aid of computer simulations, covering the most popular control philosophies used in the process industry. Lastly, a critical review of the methods discussed, on the basis of real-world industrial examples, rounds out the coverage.
Control Performance Management in Industrial Automation provides a coherent and self-contained treatment of a group of methods and applications of burgeoning importance to the detection and solution of problems with control loops that are vital in maintaining product quality, operational safety, and efficiency of material and energy consumption in the process industries. The monograph deals with all aspects of control performance management (CPM), from controller assessment (minimum-variance-control-based and advanced methods), to detection and diagnosis of control loop problems (process non-linearities, oscillations, actuator faults), to the improvement of control performance (maintenance, re-design of loop components, automatic controller re-tuning). It provides a contribution towards the development and application of completely self-contained and automatic methodologies in the field. Moreover, within this work, many CPM tools have been developed that goes far beyond available CPM packages. Control Performance Management in Industrial Automation: · presents a comprehensive review of control performance assessment methods; · develops methods and procedures for the detection and diagnosis of the root-causes of poor performance in complex control loops; · covers important issues that arise when applying these assessment and diagnosis methods; · recommends new approaches and techniques for the optimization of control loop performance based on the results of the control performance stage; and · offers illustrative examples and industrial case studies drawn from – chemicals, building, mining, pulp and paper, mineral and metal processing industries. This book will be of interest to academic and industrial staff working on control systems design, maintenance or optimisation in all process industries.
Process Control details the core knowledge and practical skills that a successful process control practitioner needs. It explains the essential technologies that are in use in current industrial practice or which may be wanting for the future. The book focuses on practical considerations, not only on those that make a control solution work, but also on those that prevent it from failing, especially for complex control loops and plant-wide control solutions. After discussing the indispensable role of control in modern process industries, the authors concentrate on the skills required for process analysis, control design, and troubleshooting. One of the first books to provide a systematic approach and structured methodology for process analysis and control design, Process Control illustrates that methodology with many practical examples that cover process control, equipment control, and control calculations derived from real projects and applications. The book uses 229 drawings and 83 tables to make the concepts it presents more intuitive and its methodology easy to follow. Process Control will help the practising control engineer to benefit from a wealth of practical experience and good ideas on how to make control work in the real world and students training to take up roles in process control are shown the applied relevance of control theory in the efficient functioning of industrial plant and the considerations needed to make it work. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This book tackles the problem of overshoot and undershoot in blood glucose levels caused by delay in the effects of carbohydrate consumption and insulin administration. The ideas presented here will be very important in maintaining the welfare of insulin-dependent diabetics and avoiding the damaging effects of unpredicted swings in blood glucose – accurate prediction enables the implementation of counter-measures. The glucose prediction algorithms described are also a key and critical ingredient of automated insulin delivery systems, the so-called “artificial pancreas”. The authors address the topic of blood-glucose prediction from medical, scientific and technological points of view. Simulation studies are utilized for complementary analysis but the primary focus of this book is on real applications, using clinical data from diabetic subjects. The text details the current state of the art by surveying prediction algorithms, and then moves beyond it with the most recent advances in data-based modeling of glucose metabolism. The topic of performance evaluation is discussed and the relationship of clinical and technological needs and goals examined with regard to their implications for medical devices employing prediction algorithms. Practical and theoretical questions associated with such devices and their solutions are highlighted. This book shows researchers interested in biomedical device technology and control researchers working with predictive algorithms how incorporation of predictive algorithms into the next generation of portable glucose measurement can make treatment of diabetes safer and more efficient.