Download Free Clinical Research Protocols For Traditional Health Sciences Book in PDF and EPUB Free Download. You can read online Clinical Research Protocols For Traditional Health Sciences and write the review.

Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients.
This highly engaging guide for clinical researchers provides a foundation for improving skills in the understanding of ethical requirements in the design and conduct of clinical research. Writing Clinical Research Protocols includes practical information on ethical principles in clinical research, designing appropriate research studies, writing consent and assent documents, getting protocols approved, special populations, confidentiality issues, and the reporting of adverse events. A valuable appendix includes a listing of web resources about research ethics as well as a glossary. This is an invaluable resource for basic scientists collaborating in clinical trials, physician investigators, clinical research fellows, research nurse coordinators, residents, and anyone who wants a better understanding of the clinical trials process. Walks investigators and trainees through identification of the ethical aspects of each section of a clinical research protocol Includes a chapter containing Case Histories Contains information on conducting clinical research within the pharmaceutical industry An appendix includes internet resources and world wide web addresses for important research ethics documents and regulations Chapter on 'Study Design and Methodology' purposely expanded to explicitly address biostatistical considerations
An ideal health care system relies on efficiently generating timely, accurate evidence to deliver on its promise of diminishing the divide between clinical practice and research. There are growing indications, however, that the current health care system and the clinical research that guides medical decisions in the United States falls far short of this vision. The process of generating medical evidence through clinical trials in the United States is expensive and lengthy, includes a number of regulatory hurdles, and is based on a limited infrastructure. The link between clinical research and medical progress is also frequently misunderstood or unsupported by both patients and providers. The focus of clinical research changes as diseases emerge and new treatments create cures for old conditions. As diseases evolve, the ultimate goal remains to speed new and improved medical treatments to patients throughout the world. To keep pace with rapidly changing health care demands, clinical research resources need to be organized and on hand to address the numerous health care questions that continually emerge. Improving the overall capacity of the clinical research enterprise will depend on ensuring that there is an adequate infrastructure in place to support the investigators who conduct research, the patients with real diseases who volunteer to participate in experimental research, and the institutions that organize and carry out the trials. To address these issues and better understand the current state of clinical research in the United States, the Institute of Medicine's (IOM) Forum on Drug Discovery, Development, and Translation held a 2-day workshop entitled Transforming Clinical Research in the United States. The workshop, summarized in this volume, laid the foundation for a broader initiative of the Forum addressing different aspects of clinical research. Future Forum plans include further examining regulatory, administrative, and structural barriers to the effective conduct of clinical research; developing a vision for a stable, continuously funded clinical research infrastructure in the United States; and considering strategies and collaborative activities to facilitate more robust public engagement in the clinical research enterprise.
Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.
Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.
In the realm of health care, privacy protections are needed to preserve patients' dignity and prevent possible harms. Ten years ago, to address these concerns as well as set guidelines for ethical health research, Congress called for a set of federal standards now known as the HIPAA Privacy Rule. In its 2009 report, Beyond the HIPAA Privacy Rule: Enhancing Privacy, Improving Health Through Research, the Institute of Medicine's Committee on Health Research and the Privacy of Health Information concludes that the HIPAA Privacy Rule does not protect privacy as well as it should, and that it impedes important health research.
Randomized clinical trials (RCTs) are often referred to as the "gold standard" of clinical research. However, in its current state, the U.S. clinical trials enterprise faces substantial challenges to the efficient and effective conduct of research. Streamlined approaches to RCTs, such as large simple trials (LSTs), may provide opportunities for progress on these challenges. Clinical trials support the development of new medical products and the evaluation of existing products by generating knowledge about safety and efficacy in pre- and post-marketing settings and serve to inform medical decision making and medical product development. Although well-designed and -implemented clinical trials can provide robust evidence, a gap exists between the evidence needs of a continuously learning health system, in which all medical decisions are based on the best available evidence, and the reality, in which the generation of timely and practical evidence faces significant barriers. Large Simple Trials and Knowledge Generation in a Learning Health System is the summary of a workshop convened by the Institute of Medicine's Roundtable on Value & Science-Driven Health Care and the Forum on Drug Discovery, Development, and Translation. Experts from a wide range of disciplines-including health information technology, research funding, clinical research methods, statistics, patients, product development, medical product regulation, and clinical outcomes research-met to marshal a better understanding of the issues, options, and approaches to accelerating the use of LSTs. This publication summarizes discussions on the potential of LSTs to improve the speed and practicality of knowledge generation for medical decision making and medical product development, including efficacy and effectiveness assessments, in a continuously learning health system. Large Simple Trials and Knowledge Generation in a Learning Health System explores acceleration of the use of LSTs to improve the speed and practicality of knowledge generation for medical decision making and medical product development; considers the concepts of LST design, examples of successful LSTs, the relative advantages of LSTs, and the infrastructure needed to build LST capacity as a routine function of care; identifies structural, cultural, and regulatory barriers hindering the development of an enhanced LST capacity; discusses needs and strategies in building public demand for and participation in LSTs; and considers near-term strategies for accelerating progress in the uptake of LSTs in the United States.
This volume, developed by the Observatory together with OECD, provides an overall conceptual framework for understanding and applying strategies aimed at improving quality of care. Crucially, it summarizes available evidence on different quality strategies and provides recommendations for their implementation. This book is intended to help policy-makers to understand concepts of quality and to support them to evaluate single strategies and combinations of strategies.
This book will serve as a road map for students and junior researchers seeking to successfully design, implement, and publish clinical research. It covers the basic elements of research proposals and implementation including regulatory approvals, continuing regulatory oversight, investigational new drug and device applications, monitoring patient safety, recruitment, clinical assessments, laboratory assessments, provision of treatment, and on-going quality control. The authors provide instruction on how to integrate research resources to successfully conduct a clinical research project, and offer guidelines on collection, quality control, and analysis of data. A companion website will include the fully searchable text and links to Journal of Investigative Medicine's "Research Tools and Issues" feature.