Download Free Climate System Dynamics And Modeling Book in PDF and EPUB Free Download. You can read online Climate System Dynamics And Modeling and write the review.

This textbook presents all aspects of climate system dynamics, on all timescales from the Earth's formation to modern human-induced climate change. It discusses the dominant feedbacks and interactions between all the components of the climate system: atmosphere, ocean, land surface and ice sheets. It addresses one of the key challenges for a course on the climate system: students can come from a range of backgrounds. A glossary of key terms is provided for students with little background in the climate sciences, whilst instructors and students with more expertise will appreciate the book's modular nature. Exercises are provided at the end of each chapter for readers to test their understanding. This textbook will be invaluable for any course on climate system dynamics and modeling, and will also be useful for scientists and professionals from other disciplines who want a clear introduction to the topic.
In the process of building and using models to comprehend the dynamics of the atmosphere, ocean and climate, the reader will learn how the different components of climate systems function, interact with each other, and vary over time. Topics include the stability of climate, Earths energy balance, parcel dynamics in the atmosphere, the mechanisms of heat transport in the climate system, and mechanisms of climate variability. Special attention is given to the effects of climate change.
This book demystifies the models we use to simulate present and future climates, allowing readers to better understand how to use climate model results. In order to predict the future trajectory of the Earth’s climate, climate-system simulation models are necessary. When and how do we trust climate model predictions? The book offers a framework for answering this question. It provides readers with a basic primer on climate and climate change, and offers non-technical explanations for how climate models are constructed, why they are uncertain, and what level of confidence we should place in them. It presents current results and the key uncertainties concerning them. Uncertainty is not a weakness but understanding uncertainty is a strength and a key part of using any model, including climate models. Case studies of how climate model output has been used and how it might be used in the future are provided. The ultimate goal of this book is to promote a better understanding of the structure and uncertainties of climate models among users, including scientists, engineers and policymakers.
A three-tier approach is presented: (i) fundamental dynamical concepts of climate processes, (ii) their mathematical formulation based on balance equations, and (iii) the necessary numerical techniques to solve these equations. This book showcases the global energy balance of the climate system and feedback processes that determine the climate sensitivity, initial-boundary value problems, energy transport in the climate system, large-scale ocean circulation and abrupt climate change.
This book allows the reader to acquire step-by-step in a time-efficient and uncomplicated the knowledge in the formation and construction of dynamic models using Vensim. Many times, the models are performed with minimal current data and very few historical data, the simulation models that the student will design in this course accommodate these analyses, with the construction of realistic hypotheses and elaborate behavior models. That's done with the help of software Vensim that helps the construction of the models as well as performing model simulations. At the end of the book, the reader is able to: - Describe the components of a complex system. - Diagnose the natural evolution of the system under analysis. - Create a model of the system and present it using the simulation software. - Carry out simulations with the model, in order to predict the behavior of the system. Content Environmental Area 1. Population Growth 2. Ecology of a Natural Reserve 3. Effects of the Intensive Farming 4. The Fishery of Shrimp 5. Rabbits and Foxes 6. A Study of Hogs 7. Ingestion of Toxins 8. The Barays of Angkor 9. The Golden Number Management Area 10. Production and Inventory 11. CO2 Emissions 12. How to Work More and Better 13. Faults 14. Project Dynamics 15. Innovatory Companies 16. Quality Control 17. The impact of a Business Plan Social Area 18. Filling a Glass 19. A Catastrophe Study 20. The Young Ambitious Worker 21. Development of an Epidemic 22. The Dynamics of Two Clocks Mechanical Area 23. The Tank 24. Study of the Oscillatory Movements 25. Design of a Chemical Reactor 26. The Butterfly Effect 27. The Mysterious Lamp Advanced Exercises (Vensim PLE PLUS) 28. Import data from an Excel file 29. Building Games and Learning Labs 30. Interactive models 31. Input Output Controls 32. Sensitivity Analysis Annex I. Guide to creating a model II. Functions, Tables and Delays III. Frequently Asked Questions FAQs IV. Download the models of this book The author Juan Martín García is teacher and a worldwide recognized expert in System Dynamics, with more than twenty years of experience in this field. Ph.D. Industrial Engineer (Spain) and Postgraduated Diploma in Business Dynamics at Massachusetts Institute of Technology MIT (USA). He teaches Vensim online courses in http://vensim.com/vensim-online-courses/ based on System Dynamics.
The social cost of carbon (SCC) for a given year is an estimate, in dollars, of the present discounted value of the damage caused by a 1-metric ton increase in CO2 emissions into the atmosphere in that year; or equivalently, the benefits of reducing CO2 emissions by the same amount in that given year. The SCC is intended to provide a comprehensive measure of the monetized value of the net damages from global climate change from an additional unit of CO2, including, but not limited to, changes in net agricultural productivity, energy use, human health effects, and property damages from increased flood risk. Federal agencies use the SCC to value the CO2 emissions impacts of various policies including emission and fuel economy standards for vehicles, regulations of industrial air pollutants from industrial manufacturing, emission standards for power plants and solid waste incineration, and appliance energy efficiency standards. There are significant challenges to estimating a dollar value that reflects all the physical, human, ecological, and economic impacts of climate change. Recognizing that the models and scientific data underlying the SCC estimates evolve and improve over time, the federal government made a commitment to provide regular updates to the estimates. To assist with future revisions of the SCC, the Interagency Working Group on the Social Cost of Carbon (IWG) requested the National Academies of Sciences, Engineering, and Medicine complete a study that assessed the merits and challenges of a limited near-term update to the SCC and of a comprehensive update of the SCC to ensure that the estimates reflect the best available science. This interim report focuses on near-term updates to the SCC estimates.
It is now widely recognized that the climate system is governed by nonlinear, multi-scale processes, whereby memory effects and stochastic forcing by fast processes, such as weather and convective systems, can induce regime behavior. Motivated by present difficulties in understanding the climate system and to aid the improvement of numerical weather and climate models, this book gathers contributions from mathematics, physics and climate science to highlight the latest developments and current research questions in nonlinear and stochastic climate dynamics. Leading researchers discuss some of the most challenging and exciting areas of research in the mathematical geosciences, such as the theory of tipping points and of extreme events including spatial extremes, climate networks, data assimilation and dynamical systems. This book provides graduate students and researchers with a broad overview of the physical climate system and introduces powerful data analysis and modeling methods for climate scientists and applied mathematicians.
This book covers the broad spectrum of system dynamics methodologies for the modelling and simulation of complex systems: systems thinking, causal diagrams, systems structure of stock and flow diagrams, parameter estimation and tests for confidence building in system dynamics models. It includes a comprehensive review of model validation and policy design and provides a practical presentation of system dynamics modelling. It also offers numerous worked-out examples and case studies in diverse fields using STELLA and VENSIM. The system dynamics methodologies presented here can be applied to nearly all areas of research and planning, and the simulations provided make the complicated issues more easily understandable. System Dynamics: Modelling and Simulation is an essential system dynamics and systems engineering textbook for undergraduate and graduate courses. It also offers an excellent reference guide for managers in industry and policy planners who wish to use modelling and simulation to manage complex systems more effectively, as well as researchers in the fields of modelling and simulation-based systems thinking.
An introductory textbook on all aspects of climate system dynamics and modelling for students, scientists and professionals.
This book introduces stochastic dynamical systems theory in order to synthesize our current knowledge of climate variability. Nonlinear processes, such as advection, radiation and turbulent mixing, play a central role in climate variability. These processes can give rise to transition phenomena, associated with tipping or bifurcation points, once external conditions are changed. The theory of dynamical systems provides a systematic way to study these transition phenomena. Its stochastic extension also forms the basis of modern (nonlinear) data analysis techniques, predictability studies and data assimilation methods. Early chapters apply the stochastic dynamical systems framework to a hierarchy of climate models to synthesize current knowledge of climate variability. Later chapters analyse phenomena such as the North Atlantic Oscillation, El Niño/Southern Oscillation, Atlantic Multidecadal Variability, Dansgaard–Oeschger events, Pleistocene ice ages and climate predictability. This book will prove invaluable for graduate students and researchers in climate dynamics, physical oceanography, meteorology and paleoclimatology.