Download Free Climate In Earth History Book in PDF and EPUB Free Download. You can read online Climate In Earth History and write the review.

I love it. Earle understands the big climate picture and paints it with exceptional clarity. — JAMES HANSEN, director, Climate Science, Awareness and Solutions, Columbia University Earth Institute What's natural, what's caused by humans, and why climate change is a disaster for all A Brief History of the Earth's Climate is an accessible myth-busting guide to the natural evolution of the Earth's climate over 4.6 billion years, and how and why human-caused global warming and climate change is different and much more dangerous. Richly illustrated chapters cover the major historical climate change processes including evolution of the sun, plate motions and continental collisions, volcanic eruptions, changes to major ocean currents, Earth's orbital variations, sunspot variations, and short-term ocean current cycles. As well as recent human-induced climate change and an overview of the implications of the COVID pandemic for climate change. Content includes: Understanding natural geological processes that shaped the climate How human impacts are now rapidly changing the climate Tipping points and the unfolding climate crisis What we can do to limit the damage to the planet and ecosystems Countering climate myths peddled by climate change science deniers. A Brief History of the Earth's Climate is essential reading for everyone who is looking to understand what drives climate change, counter skeptics and deniers, and take action on the climate emergency. AWARDS SILVER | 2022 IPPY Awards - Science
Today, climate-related processes and problems are referred to as Global Change by nearly everyone including scientists, politicians, and economists; citizens worldwide are anxious about the often ob served disorientation of our environment under the influence of man. Better information on the Earth's natural systems and their possible alterations is necessary. The topic itself is so wide that sound scien tific descriptions of it as a whole are rare. For the non-specialist infor mation from relevant fields is not easy to obtain; and often, the pro gnostic models presented are contradictory and even for specialists difficult to evaluate. Therefore, this book on Climate, Earth Processes and Earth History by Richard Huggett fills an important gap. It discusses the great, climate-related areas of the Earth's environment. The atmosphere, the hydrosphere, the sediments as products of weathering and geomorphic processes, the relief as landforms and soils, and the biosphere are thoroughly treated as the prominent sub systems which are greatly affected by climate. These subsystems not only control the visual and internal aspects of our landscapes, but they are themselves especially influenced by climatic changes which can be due to either changes in the natural system or anthropogenic changes. Thus, our landscapes will be subject to significant altera tions, if climatic variations exceed certain thresholds. The plan for the present book by Richard Huggett was originally discussed in regard to the Springer Series on Physical Environment.
Introduction : intimations of the planetary -- The globe and the planet. Four theses; Conjoined histories; The planet : a humanist category -- The difficulty of being modern. The difficulty of being modern; Planetary aspirations : reading a suicide in India; In the ruins of an enduring fable -- Facing the planetary. Anthropocene time -- Toward an anthropological clearing -- Postscript : the global reveals the planetary : a conversation with Bruno Latour.
An engaging narrative that describes the important contributions of geology to our understanding of climate change. What emerges is a much more complex and nuanced picture than is usually presented.
The context for understanding global climate change today lies in the records of Earth’s past. This is demonstrated by decades of paleoclimate research by scientists in organizations such as the Integrated Ocean Drilling Program (IODP), the Antarctic Geological Drilling Program (ANDRILL), and many others. The purpose of this full colour textbook is to put key data and published case studies of past climate change at your fingertips, so that you can experience the nature of paleoclimate reconstruction. Using foundational geologic concepts, students explore a wide variety of topics, including: marine sediments, age determination, stable isotope paleoclimate proxies, Cenozoic climate change, climate cycles, polar climates, and abrupt warming and cooling events, students are invited to evaluate published scientific data, practice developing and testing hypotheses, and infer the broader implications of scientific results. It is our philosophy that addressing how we know is as important as addressing what we know about past climate change. Making climate change science accessible is the goal of this book. This book is intended for earth science students at a variety of levels studying paleoclimatology, oceanography, Quaternary science, or earth-system science. Additional resources for this book can be found at: http://www.wiley.com/go/stjohn/climatehistory.
Explores the latest historical research on the development of the earth's climate, showing how even minor changes in the climate could result in major social, political, and religious upheavals.
Presents a history of climate to reveal that the climatic changes happening hardly compare to the changes the Earth has seen over the last 4.5 billion years.
Climate Change: Evidence and Causes is a jointly produced publication of The US National Academy of Sciences and The Royal Society. Written by a UK-US team of leading climate scientists and reviewed by climate scientists and others, the publication is intended as a brief, readable reference document for decision makers, policy makers, educators, and other individuals seeking authoritative information on the some of the questions that continue to be asked. Climate Change makes clear what is well-established and where understanding is still developing. It echoes and builds upon the long history of climate-related work from both national academies, as well as on the newest climate-change assessment from the United Nations' Intergovernmental Panel on Climate Change. It touches on current areas of active debate and ongoing research, such as the link between ocean heat content and the rate of warming.
There is little dispute within the scientific community that humans are changing Earth's climate on a decadal to century time-scale. By the end of this century, without a reduction in emissions, atmospheric CO2 is projected to increase to levels that Earth has not experienced for more than 30 million years. As greenhouse gas emissions propel Earth toward a warmer climate state, an improved understanding of climate dynamics in warm environments is needed to inform public policy decisions. In Understanding Earth's Deep Past, the National Research Council reports that rocks and sediments that are millions of years old hold clues to how the Earth's future climate would respond in an environment with high levels of atmospheric greenhouse gases. Understanding Earth's Deep Past provides an assessment of both the demonstrated and underdeveloped potential of the deep-time geologic record to inform us about the dynamics of the global climate system. The report describes past climate changes, and discusses potential impacts of high levels of atmospheric greenhouse gases on regional climates, water resources, marine and terrestrial ecosystems, and the cycling of life-sustaining elements. While revealing gaps in scientific knowledge of past climate states, the report highlights a range of high priority research issues with potential for major advances in the scientific understanding of climate processes. This proposed integrated, deep-time climate research program would study how climate responded over Earth's different climate states, examine how climate responds to increased atmospheric carbon dioxide and other greenhouse gases, and clarify the processes that lead to anomalously warm polar and tropical regions and the impact on marine and terrestrial life. In addition to outlining a research agenda, Understanding Earth's Deep Past proposes an implementation strategy that will be an invaluable resource to decision-makers in the field, as well as the research community, advocacy organizations, government agencies, and college professors and students.
To understand climate change today, we first need to know how Earth’s climate changed over the past 450 million years. Finding answers depends upon contributions from a wide range of sciences, not just the rock record uncovered by geologists. In Earth’s Climate Evolution, Colin Summerhayes analyzes reports and records of past climate change dating back to the late 18th century to uncover key patterns in the climate system. The book will transform debate and set the agenda for the next generation of thought about future climate change. The book takes a unique approach to the subject providing a description of the greenhouse and icehouse worlds of the past 450 million years since land plants emerged, ignoring major earlier glaciations like that of Snowball Earth, which occurred around 600 million years ago in a world free of land plants. It describes the evolution of thinking in palaeoclimatology and introduces the main players in the field and how their ideas were received and, in many cases, subsequently modified. It records the arguments and discussions about the merits of different ideas along the way. It also includes several notes made from the author’s own personal involvement in palaeoclimatological and palaeoceanographic studies, and from his experience of working alongside several of the major players in these fields in recent years. This book will be an invaluable reference for both undergraduate and postgraduate students taking courses in related fields and will also be of interest to historians of science and/or geology, climatology and oceanography. It should also be of interest to the wider scientific and engineering community, high school science students, policy makers, and environmental NGOs. Reviews: "Outstanding in its presentation of the facts and a good read in the way that it intersperses the climate story with the author's own experiences. [This book] puts the climate story into a compelling geological history." -Dr. James Baker "The book is written in very clear and concise prose, [and takes] original, enlightening, and engaging approach to talking about 'ideas' from the perspective of the scientists who promoted them." -Professor Christopher R. Scotese "A thrilling ride through continental drift and its consequences." - Professor Gerald R. North "Written in a style and language which can be easily understood by laymen as well as scientists." - Professor Dr Jörn Thiede "What makes this book particularly distinctive is how well it builds in the narrative of change in ideas over time." - Holocene book reviews, May 2016 "This is a fascinating book and the author’s biographical approach gives it great human appeal." - E Adlard