Download Free Climate Change And Crop Protection Book in PDF and EPUB Free Download. You can read online Climate Change And Crop Protection and write the review.

This book addresses the impact of important climatic changes on plant pests (including weeds, diseases and insect pests), and their interactions with crop plants. Anthropogenic activities have seriously impacted the global climate. As a result, carbon dioxide (CO2) and temperature levels of the earth are on a continuous rise. The global temperature is expected to increase by a 3°C or more by the end of this century. The CO2 concentration was below 300 parts per million (ppm) before the start of the industrial era; however, recently it has exceeded 400 ppm. This is highest ever in human history. Other than global warming and elevated CO2 concentrations, anthropogenic activities have also disturbed the global water cycle, ultimately, impacting the quantity and distribution of rainfall. This has resulted in drought conditions in many parts of the world. Global warming, elevated CO2 concentration and drought are considered the most important recent climatic changes that are impacting global ecosystems and human societies. Among other impacts, the effects of climatic changes on pests, pest-crop interactions and pest control are important with relevance to global food security, and hence require immediate attention by plant scientists. This book discusses innovative and the most effective pest control methods under an environment of changing climate and elaborates on the impact of drought on plant pests and their control.
Agricultural, botanical, and social scientists from the four quarters of the world address the impact of climate change on crop productivity, some approaches to adapt plants to both biotic and abiotic stresses, and measures to reduce greenhouse gases. They cover predictions of climate change within the context of agriculture, adapting to biotic and abiotic stresses through crop breeding, sustainable and resource-conserving technologies for adapting to and mitigating climate change, and new tools for enhancing crop adaptation to climate change. Specific topics include economic impacts of climate change on agriculture to 2030, breeding for adaptation to heat and drought stress, managing resident soil microbial community structure and function to suppress the development of soil-borne diseases, and applying geographical information systems (GIS) and crop simulation modeling in climate change research.
This study warns that climate change may increase the risk of pests being introduced to new areas. It recommends conducting pest risk analyses and strengthening international cooperation as preventive measures to protect plant health.
Insects, being poikilothermic, are among the organisms that are most likely to respond to changes in climate, particularly increased temperatures. Range expansions into new areas, further north and to higher elevations, are already well documented, as are physiological and phenological responses. It is anticipated that the damage by insects will increase as a consequence of climate change, i.e. increasing temperatures primarily. However, the evidence in support of this common “belief” is sparse. Climate Change and Insect Pests sums up present knowledge regarding both agricultural and forest insect pests and climate change in order to identify future research directions.
Meeting the world’s food security challenge will require a multi-national, collaborative effort to integrate the best research from science, engineering and socioeconomics so that technological advances can bring benefits where they are most needed. The present book covers the effect of major environmental problems on crop production and how to cope with these issues for sustainable agriculture and improvements of crops. The world’s population is predicted to hit 9.6 Billion by 2050, up from today’s total of nearly 7.3 Billion, and with it food demand is predicted to increase substantially. The post-war ‘second agricultural revolution’ in developed countries, and the ‘green revolution’ in developing nations in the mid- 1960s converted agricultural practices and elevated crop yields spectacularly, but the outcome is levelling off and will not meet projected demand. Simultaneously, crop production is affected by many other factors, including industrial pollution, overuse of fertilizers and insecticides, heavy metal and radiation stresses etc. It has been noted that many pests are becoming resistant to insecticides. Estimates vary, but around 25% of crops can be lost to pests and diseases. Climate change associated with agriculture is also a global issue. Agriculture is a significant contributor to greenhouse gases and is estimated to account for 10-12% of total greenhouse gas (GHG) emissions. Many of the issues highlighted are global problems and are addressed thoroug hly in this work.
Farming for Our Future examines the policies and legal reforms necessary to accelerate the adoption of practices that can make agriculture in the United States climate-neutral or better. These proven practices will also make our food system more resilient to the impacts of climate change. Agriculture's contribution to climate change is substantial--much more so than official figures suggest--and we will not be able to achieve our overall mitigation goals unless agricultural emissions sharply decline. Fortunately, farms and ranches can be a major part of the climate solution, while protecting biodiversity, strengthening rural communities, and improving the lives of the workers who cultivate our crops and rear our animals. The importance of agricultural climate solutions can not be underestimated; it is a critical element both in ensuring our food security and limiting climate change. This book provides essential solutions to address the greatest crises of our time.
Climate Change and Food Security with Emphasis on Wheat is the first book to present the full scope of research in wheat improvement, revealing the correlations to global issues including climate change and global warming which contribute to food security issues. Wheat plays a key role in the health of the global economy. As the world population continuously increases, economies modernize, and incomes rise, wheat production will have to increase dramatically to secure it as a reliable and sustainable food source. Since covering more land area with wheat crops is not a sustainable option, future wheat crops must have consistently higher yields and be able to resist and/or tolerate biotic and abiotic stresses that result from climate change. Addressing the biophysical and socioeconomic constraints of producing high-yielding, disease-resistant, and good quality wheat, this book will aid in research efforts to increase and stabilize wheat production worldwide. Written by an international team of experts, Climate Change and Food Security with Emphasis on Wheat is an excellent resource for academics, researchers, and students interested in wheat and grain research, especially as it is relevant to food security. - Covers a wide range of disciplines, including plant breeding, genetics, agronomy, physiology, pathology, quantitative genetics and genomics, biotechnology and gene editing - Explores the effect of climate change on biotic stresses (stripe rust, stem rust, leaf rust, Karnal bunt, spot blotch) on wheat production and utilization of biotechnology - Focuses on whole genome sequencing and next-generation sequencing technologies to improve wheat quality and address the issue of malnutrition in developing world
Understanding Climate Change Impacts on Crop Productivity and Water examines the greenhouse gas emissions and their warming effect, climate change projections, crop productivity and water. The book explores the most important greenhouse gases that influence the climate system, technical terms associated with climate projections, and the different mechanisms impacting crop productivity and water balance. Adaptive and mitigative strategies are proposed to cope with negative effects of climate change in particular domains. This book will help researchers interested in climate change impacts on the atmosphere, soil and plants. - Uncovers links between climate change and its impact on crop and water outputs - Integrates information on greenhouse gas cycles and mathematical equations into climate/crop models for analysis and seasonal prediction systems - Provides strategies for efficient resource management and sustainable crop production in future - Helps researchers interested in climate change impacts on the atmosphere, soil and plants
Climate Resilient Agriculture for Ensuring Food Security comprehensively deals with important aspects of climate resilient agriculture for food security using adaptation and mitigation measures. Climatic changes and increasing climatic variability are likely to aggravate the problem of future food security by exerting pressure on agriculture. For the past few decades, the gaseous composition of the earth’s atmosphere has been undergoing significant changes, largely through increased emissions from the energy, industry and agriculture sectors; widespread deforestation as well as fast changes in land use and land management practices. Agriculture and food systems must improve and ensure food security, and to do so they need to adapt to climate change and natural resource pressures, and contribute to mitigating climate change. Climate-resilient agriculture contributes to sustainably increasing agricultural productivity and incomes, adapting and building resilience to climate change and reducing and/or eliminating greenhouse gas emissions where possible. The information on climate resilient agriculture for ensuring food security is widely scattered. There is currently no other book that comprehensively and exclusively deals with the above aspects of agriculture and focuses on ensuring food security. This volume is divided into fourteen chapters, which include the Introduction, Causes of Climate Change, Agriculture as a Source of Greenhouse Gases, Impacts of Climate Change on Agriculture, Regional Impacts on Climate Change, Impacts on Crop Protection, Impacts on Insect and Mite Pests, Impacts on Plant Pathogens, Impacts on Nematode Pests, Impacts on Weeds, Impacts on Integrated Pest Management, Climate Change Adaptation, Climate Change Mitigation, and A Road Map Ahead. The book is extensively illustrated with excellent photographs, which enhance the quality of publication. It is clearly written, using easy-to-understand language. It also provides adoptable recommendations involving eco-friendly adaptation and mitigation measures. This book will be of immense value to the scientific community involved in teaching, research and extension activities. The material can also be used for teaching post-graduate courses. It will also serve as a very useful reference source for policy makers.
Although chemical pesticides safeguard crops and improve farm productivity, they are increasingly feared for their potentially dangerous residues and their effects on ecosystems. The Future Role of Pesticides explores the role of chemical pesticides in the decade ahead and identifies the most promising opportunities for increasing the benefits and reducing the risks of pesticide use. The committee recommends R&D, program, and policy initiatives for federal agriculture authorities and other stakeholders in the public and private sectors. This book presents clear overviews of key factors in chemical pesticide use, including: Advances in genetic engineering not only of pest-resistant crops but also of pests themselves. Problems in pesticide useâ€"concerns about the health of agricultural workers, the ability of pests to develop resistance, issues of public perception, and more. Impending shifts in agricultureâ€"globalization of the economy, biological "invasions" of organisms, rising sensitivity toward cross-border environmental issues, and other trends. With a model and working examples, this book offers guidance on how to assess various pest control strategies available to today's agriculturist.