Download Free Climate And Geo Sciences Book in PDF and EPUB Free Download. You can read online Climate And Geo Sciences and write the review.

DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.
It has been widely recognized recently that in order to make scientific progress on large and important problems (eg, carbon dioxide effects on climate, viability of various sites for nuclear waste disposal etc.), it is necessary to integrate knowledge from wide ranging sets of disciplines. This is certainly true in the climate sciences, for progress in understanding the cause of the ice ages or the effects of industrial pollution on the future climate or even the likelihood of severe climatic consequences in the aftermath of nuclear war. All require state-of -the -art input from many geoscience disci plines climatology, oceanography, meteorology, chemistry, ecology, glaciology, geology, astronomy, space technology, computer technology, mathematics etc. Major international meetings have called for interaction of such geo-science disciplines to solve real world problems. To move beyond the rhetorical level, the NATO Special Programme on Global Transport Mechanisms in the Geo-Sciences whose activities started in 1983, deci ded to organise his closing symposium on such a topic which focus on the relationship between climate and geo-sciences. This symposium was held at the end of May 1988 at the Universite Catholique de Louvain, Louvain-Ia-Neuve, Belgium. One hundred-and-thirty participants from the 16 NATO countries and a number of non-NATO countries assembled for the Symposium. Another feature was the attendance by special invitation of 16 pro mising young scientists who might well become leading scientists on climate and geo-sciences in their respective countries in the next century.
It has been widely recognized recently that in order to make scientific progress on large and important problems (eg, carbon dioxide effects on climate, viability of various sites for nuclear waste disposal etc.), it is necessary to integrate knowledge from wide ranging sets of disciplines. This is certainly true in the climate sciences, for progress in understanding the cause of the ice ages or the effects of industrial pollution on the future climate or even the likelihood of severe climatic consequences in the aftermath of nuclear war. All require state-of -the -art input from many geoscience disci plines climatology, oceanography, meteorology, chemistry, ecology, glaciology, geology, astronomy, space technology, computer technology, mathematics etc. Major international meetings have called for interaction of such geo-science disciplines to solve real world problems. To move beyond the rhetorical level, the NATO Special Programme on Global Transport Mechanisms in the Geo-Sciences whose activities started in 1983, deci ded to organise his closing symposium on such a topic which focus on the relationship between climate and geo-sciences. This symposium was held at the end of May 1988 at the Universite Catholique de Louvain, Louvain-Ia-Neuve, Belgium. One hundred-and-thirty participants from the 16 NATO countries and a number of non-NATO countries assembled for the Symposium. Another feature was the attendance by special invitation of 16 pro mising young scientists who might well become leading scientists on climate and geo-sciences in their respective countries in the next century.
Perhaps just as perplexing as the biggest issues at the core of Earth science is the nature of communicating about nature itself. New Trends in Earth-Science Outreach and Engagement: The Nature of Communication examines the processes of communication necessary in bridging the chasm between climate change and natural hazard knowledge and public opinion and policy. At this junction of science and society, 17 chapters take a proactive and prescriptive approach to communicating with the public, the media, and policy makers about the importance of Earth science in everyday life. Book chapters come from some 40 authors who are geophysical scientists, social scientists, educators, scholars, and professionals in the field. Bringing diverse perspectives, these authors hail from universities, and research institutes, government agencies, non-profit associations, and corporations. They represent multiple disciplines, including geosciences, education, climate science education, environmental communication, and public policy. They come from across the United States and around the world. Arranged into five sections, the book looks at geosciences communication in terms of: 1) Education 2) Risk management 3) Public discourse 4) Engaging the public 5) New media From case studies and best practices to field work and innovations, experts deliver pragmatic solutions and delve into significant theories, including diffusion, argumentation, and constructivism, to name a few. Intended for environmental professionals, researchers, and educators in the geophysical and social sciences, the book emphasizes communication principles and practices within an up-to-the-minute context of new environmental issues, new technologies, and a new focus on resiliency.
Energy and Climate Change: An Introduction to Geological Controls, Interventions and Mitigations examines the Earth system science context of the formation and use of fossil fuel resources, and the implications for climate change. It also examines the historical and economic trends of fossil fuel usage and the ways in which these have begun to affect the natural system (i.e., the start of the Anthropocene). Finally, the book examines the effects we might expect in the future looking at evidence from the "deep time" past, and looks at ways to mitigate climate change by using negative emissions technology (e.g. bioenergy and carbon capture and storage, BECCS), but also by adapting to perhaps a higher than "two degree world," particularly in the most vulnerable, developing countries. Energy and Climate Change is an essential resource for geoscientists, climate scientists, environmental scientists, and students; as well as policy makers, energy professionals, energy statisticians, energy historians and economists. Provides an overarching narrative linking Earth system science with an integrated approach to energy and climate change Includes a unique breadth of coverage from modern to "deep time" climate change; from resource geology to economics; from climate change mitigation to adaptation; and from the industrial revolution to the Anthropocene Readable, accessible, and well-illustrated, giving the reader a clear overview of the topic
Authoritative reviews on the wide-ranging ramifications of climate change, from an international team of eminent researchers.