Download Free Click Chemistry Book in PDF and EPUB Free Download. You can read online Click Chemistry and write the review.

Endlich ein Buch zu Click-Reaktionen mit Schwerpunkt auf der organischen Synthese. Beschrieben werden das Click-Konzept, die zugrunde liegenden Mechanismen und Hauptanwendungsgebiete. NÜTZLICH: Die Click-Chemie ist ein wirkungsvoller Ansatz, um auf einfache Weise komplexe organische Moleküle aus verfügbaren Ausgangsmaterialien zu erzeugen ? der Traum jedes Organikers. EINZIGARTIGER SCHWERPUNKT: Aufgrund des besonderen Schwerpunkts auf der organischen Synthese ist dieses Buch für jeden Synthesechemiker von hohem Interesse. HILFREICH: Click-Reaktionen sind stereospezifisch, einfach durchzuführen, hoch ergiebig und lassen sich in einfach zu entfernenden oder nicht schädlichen Lösungsmitteln durchführen. INTERDISZIPLINÄR: Das Click-Konzept ist bei der Herstellung natürlicher Produkte, bioaktiver Verbindungen, von Kohlenhydraten, Arzneimitteln, Polymeren, supramolekularer Strukturen und Materialien weit verbreitet.
Mimicking natural biochemical processes, click chemistry is a modular approach to organic synthesis, joining together small chemical units quickly, efficiently and predictably. In contrast to complex traditional synthesis, click reactions offer high selectivity and yields, near-perfect reliability and exceptional tolerance towards a wide range of functional groups and reaction conditions. These ‘spring loaded’ reactions are achieved by using a high thermodynamic driving force, and are attracting tremendous attention throughout the chemical community. Originally introduced with the focus on drug discovery, the concept has been successfully applied to materials science, polymer chemistry and biotechnology. The first book to consider this topic, Click Chemistry for Biotechnology and Materials Science examines the fundamentals of click chemistry, its application to the precise design and synthesis of macromolecules, and its numerous applications in materials science and biotechnology. The book surveys the current research, discusses emerging trends and future applications, and provides an important nucleation point for research. Edited by one of the top 100 young innovators with the greatest potential to have an impact on technology in the 21st century according to Technology Review and with contributions from pioneers in the field, Click Chemistry for Biotechnology and Materials Science provides an ideal reference for anyone wanting to learn more about click reactions.
This reference work presents the state-of-the-art in the field of click chemistry, collecting the most useful, practical, and reliable methods. Click chemistry is a discipline that has grown rapidly since the introduction of this term by Barry Sharpless and Huisgen approximately two decades ago. Initially, click reactions mostly involved copper-catalyzed azide-alkyne cycloadditions and their applications to connect molecules, but gradually new types of click reactions were developed which also allowed a much wider range of applications throughout the chemical, biological, and materials sciences. This volume provides an overview of the most widely used click reactions and their scope and limitations. Written by pioneers and leaders in the field and including representative applications and experimental procedures. Newcomers to the field are enabled to instantly apply these reactions in synthesis.
Erik Wischerhoff, Nezha Badi, André Laschewsky and Jean-François Lutz Smart Polymer Surfaces: Concepts and Applications in Biosciences; S. Petersen, M. Gattermayer and M. Biesalski Hold on at the Right Spot: Bioactive Surfaces for the Design of Live-Cell Micropatterns; Julien Polleux Interfacing Cell Surface Receptors to Hybrid Nanopatterned Surfaces: A Molecular Approach for Dissecting the Adhesion Machinery; Abigail Pulsipher and Muhammad N. Yousaf Self-Assembled Monolayers as Dynamic Model Substrates for Cell Biology; D. Volodkin, A. Skirtach and H. Möhwald LbL Films as Reservoirs for Bioactive Molecules; R. Gentsch and H. G. Börner Designing Three-Dimensional Materials at the Interface to Biology; Joerg C. Tiller Antimicrobial Surfaces;
Lays the foundation for new methods and applications of carbohydrate click chemistry Introduced by K. Barry Sharpless of The Scripps Research Institute in 2001, click chemistry mimics nature, giving researchers the tools needed to generate new substances quickly and reliably by joining small units together. With contributions from more than thirty pioneering researchers in the field, this text explores the many promising applications of click chemistry in glycoscience. Readers will learn both the basic concepts of carbohydrate click chemistry as well as its many biomedical applications, including synthetic antigens, analogs of cell-surface receptors, immobilized enzymes, targeted drug delivery systems, and multivalent cancer vaccines. Click Chemistry in Glycoscience examines a broad range of methodologies and strategies that have emerged from this rapidly evolving field. Each chapter describes new approaches, ideas, consequences, and applications resulting from the introduction of click processes. Divided into four sections, the book covers: Click chemistry strategies and decoupling Thio-click chemistry of carbohydrates Carbohydrate click chemistry for novel synthetic targets Carbohydrate click chemistry in biomedical sciences Thoroughly researched, the book reflects the most recent findings published in the literature. Diagrams and figures throughout the book enable readers to more easily grasp complex concepts and reaction processes. At the end of each chapter, references lead to the primary literature for further investigation of individual topics. The application of click chemistry to carbohydrates has tremendous implications for research. With this book as their guide, researchers have a solid foundation from which they can develop new methods and applications of carbohydrate click chemistry, including new carbohydrate-based therapeutics.
Click chemistry involves highly efficient, reliable, and stereoselective reactions that can synthesize new materials cost-effectively. The first volume entitled “Click Chemistry: Fundamentals and Synthesis” covers the fundamentals, mechanisms, kinetics, and various approaches to synthesizing new materials making it suitable for synthetic chemists and researchers working in nanoscience and technology. The main objective of this book is to provide information about current, state-of-the-art development in click chemistry as well as challenges. Experts from around the world have contributed towards this book, making this a suitable textbook for students and providing new guidelines to researchers and industries working in these areas.
Click chemistry, which is also referred to as linkage chemistry, dynamic, combinatorial chemistry or quick linking combinatorial chemistry describes the reaction that joins molecular fragments as simply, efficient and versatile as clicking a mouse. The two units with specific click structures can be linked by a click reaction no matter what is attached to the structure, and only the specific click structures can be joined. It emphasises the development of new combinatorial chemistries on the basis of the synthesis of efficient and highly selective carbon-heteroatom bonds (C-X-C), and effectively prepares molecules with high diversity via these simple reactions. It significantly simplified and promoted the development of synthesis chemistry. Click chemistry has become one of the most useful and attractive synthetic strategies in many fields. In this book, the definition of click chemistry is explained, the characteristics and types of click chemistry are introduced, and some specific reaction types are focused on. The progress for using click chemistry for the synthesis and functionalisation of hydrogels, elastomers, surface modifications, membrane preparations, assemble polyaromatic structures, biomedical fields and optical sensing in biological analyses are described in detail. The problems and challenges for using click chemistry in different fields are analysed.
Mimicking natural biochemical processes, click chemistry is a modular approach to organic synthesis, joining together small chemical units quickly, efficiently and predictably. In contrast to complex traditional synthesis, click reactions offer high selectivity and yields, near-perfect reliability and exceptional tolerance towards a wide range of functional groups and reaction conditions. These ‘spring loaded’ reactions are achieved by using a high thermodynamic driving force, and are attracting tremendous attention throughout the chemical community. Originally introduced with the focus on drug discovery, the concept has been successfully applied to materials science, polymer chemistry and biotechnology. The first book to consider this topic, Click Chemistry for Biotechnology and Materials Science examines the fundamentals of click chemistry, its application to the precise design and synthesis of macromolecules, and its numerous applications in materials science and biotechnology. The book surveys the current research, discusses emerging trends and future applications, and provides an important nucleation point for research. Edited by one of the top 100 young innovators with the greatest potential to have an impact on technology in the 21st century according to Technology Review and with contributions from pioneers in the field, Click Chemistry for Biotechnology and Materials Science provides an ideal reference for anyone wanting to learn more about click reactions.
B. R. Buckley and H. Heaney: Mechanistic Investigations of Copper(I)- Catalyzed Alkyne–Azide Cycloaddition Reactions.- J. D. Crowley and D. A. McMorran: “Click-Triazole” Coordination Chemistry: Exploiting 1,4-Disubstituted-1,2,3-Triazoles as Ligands.- S. Lee and A. H. Flood: Binding Anions in Rigid and Reconfigurable Triazole Receptors.- M. Watkinson: Click Triazoles as Chemosensors.- H.-F. Chow, C.-M. Lo and Y. Chen: Triazole-Based Polymer Gels.- T. Zheng, S. H. Rouhanifard, A. S. Jalloh, P. Wu: Click Triazoles for Bioconjugation.- S. Mignani, Y. Zhou, T. Lecourt and L. Micouin: Recent Developments in the Synthesis 1,4,5-Trisubstituted Triazoles.