Download Free Clean Energy Choices Book in PDF and EPUB Free Download. You can read online Clean Energy Choices and write the review.

How do we heat our homes, light our rooms, and power our cars? With energy! In 2014, the United States relied on fossil fuels for about 67 percent of its power. But as the fossil fuel supply dwindles and climate change becomes an increasingly urgent issue, individuals, businesses, and governments are expanding their sources of renewable energy, including solar, wind, biofuel, hydro, and geothermal. In Renewable Energy: Discover the Fuel of the Future, readers ages 9 to 12 learn about these renewable energy sources and discover how sunshine can be used to power light bulbs and how the earth's natural heat can be used to warm our houses. Young readers weigh the pros and cons of different energy sources and make their own informed opinions about which resources are the best choices for different uses. Renewable energy industries provide a booming field for future scientists and engineers. This book shows kids these future jobs and gets them excited about contributing to a world run on clean energy. Hands-on projects, essential questions, links to online primary sources, and science-minded prompts to think more about energy, the environment, and the repercussions of our choices make this book a key addition to classrooms and libraries.
Brings together disparate conversations about wildlife conservation and renewable energy, suggesting ways these two critical fields can work hand in hand. Renewable energy is often termed simply "green energy," but its effects on wildlife and other forms of biodiversity can be quite complex. While capturing renewable resources like wind, solar, and energy from biomass can require more land than fossil fuel production, potentially displacing wildlife habitat, renewable energy infrastructure can also create habitat and promote species health when thoughtfully implemented. The authors of Renewable Energy and Wildlife Conservation argue that in order to achieve a balanced plan for addressing these two crucially important sustainability issues, our actions at the nexus of these fields must be directed by current scientific information related to the ecological effects of renewable energy production. Synthesizing an extensive, rapidly growing base of research and insights from practitioners into a single, comprehensive resource, contributors to this volume • describe processes to generate renewable energy, focusing on the Big Four renewables—wind, bioenergy, solar energy, and hydroelectric power • review the documented effects of renewable energy production on wildlife and wildlife habitats • consider current and future policy directives, suggesting ways industrial-scale renewables production can be developed to minimize harm to wildlife populations • explain recent advances in renewable power technologies • identify urgent research needs at the intersection of renewables and wildlife conservation Relevant to policy makers and industry professionals—many of whom believe renewables are the best path forward as the world seeks to meet its expanding energy needs—and wildlife conservationists—many of whom are alarmed at the rate of renewables-related habitat conversion—this detailed book culminates with a chapter underscoring emerging opportunities in renewable energy ecology. Contributors: Edward B. Arnett, Brian B. Boroski, Regan Dohm, David Drake, Sarah R. Fritts, Rachel Greene, Steven M. Grodsky, Amanda M. Hale, Cris D. Hein, Rebecca R. Hernandez, Jessica A. Homyack, Henriette I. Jager, Nicole M. Korfanta, James A. Martin, Christopher E. Moorman, Clint Otto, Christine A. Ribic, Susan P. Rupp, Jake Verschuyl, Lindsay M. Wickman, T. Bently Wigley, Victoria H. Zero
This book is open access under a CC BY 4.0 license. This book focuses on the global cycles of energy, water and carbon, which are not only the essentials of our main energy carriers, the fossil fuels, but are also the building blocks of life. The book offers an overview of the basic scientific facts and relationships that are needed to understand today’s energy generation and use, how they relate to global climate, the water cycle and other resources, and the complexities of energy policy. Building on the work of the Desertec project, it presents the main technological options that we will have in a world after the “Energiewende” and presents the possible future solutions for a sustainable world. The book is written in an engaging, descriptive style that can be understood by those without specific knowledge of science or economics and allows readers to form their own conclusions. Controversy rages over energy problems, climate change and their possible solutions. Expressions like “climate deniers”, “renaissance of nuclear energy”, “stop the war on coal”, and “Energiewende now” represent a diversity of opinions that divide our society and political leaders. This book shows the reader the whole energy picture and how it is part of the wider global problems of overpopulation and uncontrolled economies in a world of limited resources.
Increasing energy efficiency and the use of renewable energy are the most important actions that can be taken to combat climate changes. As a result, the growth of clean energy will likely be one of the major economic engines of the coming decade.
This Intergovernmental Panel on Climate Change Special Report (IPCC-SRREN) assesses the potential role of renewable energy in the mitigation of climate change. It covers the six most important renewable energy sources - bioenergy, solar, geothermal, hydropower, ocean and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. SRREN brings a broad spectrum of technology-specific experts together with scientists studying energy systems as a whole. Prepared following strict IPCC procedures, it presents an impartial assessment of the current state of knowledge: it is policy relevant but not policy prescriptive. SRREN is an invaluable assessment of the potential role of renewable energy for the mitigation of climate change for policymakers, the private sector, and academic researchers.
Now that Trump has turned the United States into a global climate outcast, will China take the lead in saving our planet from environmental catastrophe? Many signs point to yes. China, the world's largest carbon emitter, is leading a global clean energy revolution, phasing out coal consumption and leading the development of a global system of green finance. But as leading China environmental expert Barbara Finamore explains, it is anything but easy. The fundamental economic and political challenges that China faces in addressing its domestic environmental crisis threaten to derail its low-carbon energy transition. Yet there is reason for hope. China's leaders understand that transforming the world's second largest economy from one dependent on highly polluting heavy industry to one focused on clean energy, services and innovation is essential, not only to the future of the planet, but to China's own prosperity.
Textbook on the science and methods behind a global transition to 100% clean, renewable energy for science, engineering, and social science students.
A volume on the political economy of clean energy transition in developed and developing regions, with a focus on the issues that different countries face as they transition from fossil fuels to lower carbon technologies.
Fundamentals of Renewable Energy Systems goes beyond theoretical aspects of advances in renewable energy and addresses future trends. By focusing on the design of developing technologies, relevant operation and detailed background and an understanding of the application of power electronics and thermodynamics processes in renewable energy, this book provides an analysis of advancing energy systems. The book will be of interest to engineering graduates, researchers, professors and industry professionals involved in the renewable energy sector and is ideal for advanced engineering courses dealing with renewable energy, sources, thermal and electrical energy production and sustainability. With increasing focus on developing low carbon energy production, audiences need to have the engineering knowledge and practical skills to develop and implement creative solutions to engineering problems encountered with renewable energy technologies. By looking at renewable energy capture and conversion, system design and analysis, project development and implementation, each modular chapter examines recent advances in specific renewable energy systems with detailed methods, calculations and worked examples. - Includes recent techniques used to design and model different renewable energy sources (RES) - Demonstrates how to use power electronics in renewable systems - Discusses how to identify, design, integrate and operate the most suitable technologies through key problems