Download Free Clay Science Book in PDF and EPUB Free Download. You can read online Clay Science and write the review.

The first edition of the Handbook of Clay Science published in 2006 assembled the scattered literature on the varied and diverse aspects that make up the discipline of clay science. The topics covered range from the fundamental structures (including textures) and properties of clays and clay minerals, through their environmental, health and industrial applications, to their analysis and characterization by modern instrumental techniques. Also included are the clay-microbe interaction, layered double hydroxides, zeolites, cement hydrates, and genesis of clay minerals as well as the history and teaching of clay science. The 2e adds new information from the intervening 6 years and adds some important subjects to make this the most comprehensive and wide-ranging coverage of clay science in one source in the English language. - Provides up-to-date, comprehensive information in a single source - Covers applications of clays, as well as the instrumental analytical techniques - Provides a truly multidisciplinary approach to clay science
Nanosized Tubular Clay Minerals provides the latest coverage from leading scientists on a wide field of expertise regarding the current state of knowledge about nanosized tubular clay minerals. All chapters have been carefully edited and coordinated, and readers will find a resource that provides a clear view of the fundamental properties of clay materials and how their properties vary in chemical composition, structure, and the ways in which their modes of occurrence affect their engineering applications. Besides being a great reference, the book provides research scientists, university teachers, industrial chemists, physicists, graduate students, and environmental engineers and technologists with the ability to analyze and characterize clays and clay minerals to improve selectivity, along with techniques on how they can apply clays in ceramics in all aspects of industrial, geotechnical, agricultural, and environmental use. - Examines clay properties from the molecular to the macroscopic scale - Addresses experimental and modeling issues - Authored by experts who are well-versed in the properties of nanosized tubular clay minerals
Surface and Interface Chemistry of Clay Minerals, Volume 9, delivers a fundamental understanding of the surface and interface chemistry of clay minerals, thus serving as a valuable resource for researchers active in the fields of materials chemistry and sustainable chemistry. Clay minerals, with surfaces ranging from hydrophilic, to hydrophobic, are widely studied and used as adsorbents. Adsorption can occur at the edges and surfaces of clay mineral layers and particles, and in the interlayer region. This diversity in properties and the possibility to tune the surface properties of clay minerals to match the properties of adsorbed molecules is the basis for study. This book requires a fundamental understanding of the surface and interface chemistry of clay minerals, and of the interaction between adsorbate and adsorbent. It is an essential resource for clay scientists, geologists, chemists, physicists, material scientists, researchers, and students. - Presents scientists and engineers with a resource they can rely on for their own research and work involving clay minerals - Includes an in-depth look at ion exchange, adsorption of inorganic and organic molecules, including polymers and proteins, and catalysis occurring at the surfaces of clay minerals - Includes materials chemistry of clay minerals with chiral clay minerals, optical materials and functional films
Infrared and Raman Spectroscopies of Clay Minerals, Volume 8 in the Developments in Clay Science series, is an up-to-date overview of spectroscopic techniques used in the study of clay minerals. The methods include infrared spectroscopy, covering near-IR (NIR), mid-IR (MIR), far-IR (FIR) and IR emission spectroscopy (IES), as well as FT-Raman spectroscopy and Raman microscopy. This book complements the succinct introductions to these methods described in the original Handbook of Clay Science (Volumes 1, 1st Edition and 5B, 2nd Edition), offering greater depth and featuring the most important literature since the development and application of these techniques in clay science. No other book covers such a wide variety of vibrational spectroscopic techniques in a single volume for clay and soil scientists. - Includes a systematic review of spectroscopic methods - Covers the theory of infrared and Raman spectroscopies and instrumentation - Features a series of chapters each covering either a particular technique or application
This book is an attempt to provide a comprehensive and coherent description of three widely separated aspects of clays: the science of clays; the industrial uses of clays; and the role of clays in the environment. Most of the existing literature lacks such an integrated study and this work endeavours to fill that gap. An exhaustive account of the science of clays is presented in Part I of the book, which includes the classification, origin and evolution, composition and internal structure, chemical and physical properties of clays; soil mechanics; and analytical techniques for determining clay constituents. Part II provides a comprehensive description of the applications of clays and their derivatives in various industries, while Part III describes the role of clays in the environment; the pollution caused by clay minerals; and the application of clays in order to prevent environmental hazards. A principal feature of the book is its explanation of how the structure and composition of particular clay types facilitate their specific industrial or environmental applications, thus describing the interrelationship between three widely varying aspects of clay. A number of thought-provoking questions are raised at the end of the work in order to leave readers with a better insight in this regard.
This book on Applied Clay Mineralogy is comprehensive. It covers the structure, composition, and physical and chemical properties of kaolinite, halloysite, ball clays; bentonites including sodium montmorillonite, calcium montmorillonite, and hectorite; and palygorskite and sepiolite. There is also a short chapter on common clays which are used for making structural clay products and lightweight aggregate. The location and geology of the major clay deposits that are marketed worldwide and regionally include kaolins from the United States, Southwest England, Brazil, and the Czech Republic along with halloysite from New Zealand and ball clays from the US, England, Germany, and Ukraine. Bentonites from the U.S. and Europe are included along with palygorskite and sepiolite from the U.S., China, Senegal, and Spain. The mining and processing of the various clays are described. Extensive discussions of the many applications of the clays are included. The appendices cover the important laboratory tests that are used to identify and evaluate the various types of clay. Many figures are included covering electron micrographs, processing flow sheets, stratigraphy, and location maps. * Provides the structure and composition of clay minerals, as well as their phyisical and chemical properties * Discusses pplications for Kaolin, Bentonite, Palygorskite and Sepiolite * Contains appendixes of laboratory tests and procedures, as well as a test for common clays
Includes a chapter on geology and clays.
Clay Nanoparticles: Properties and Applications sets out the major properties of clay nanoparticles and their technological applications. The first part of the book focuses on the characterization of nanoclays, including layered, fibrous and tubular clay minerals. The second part illustrates the current and potential applications of nanoclays within material science and biotechnology. These include the development of geopolymers and bionanocomposites based on sustainable polymers filled with ecocompatible nanoclay. The potential use of nanoclays as flame retardants is also discussed, along with the correlation between the properties and potential applications of several nanoclay types. In particular, the applications explored include nanoclays as drug delivery systems and for environmental protection. The book provides a complete and multidisciplinary exploration of nanoclays, highlighting a range of perspectives within current nanotechnology research. Assesses the advantages of using nanoclays instead of conventional clay materials in product design Describes the major characterization techniques – both experimental and computational – for nanoclays Explores new fabrication techniques based on pristine and modified clay nanoparticles that are being used both in materials science and biotechnology
The one-stop resource for rubber-clay nanocomposite information The first comprehensive, single-volume book to compile all the most important data on rubber-clay nanocomposites in one place, Rubber-Clay Nanocomposites: Science, Technology, and Applications reviews rubber-clay nanocomposites in an easy-to-reference format designed for R&D professionals. Including contributions from experts from North America, Europe, and Asia, the book explores the properties of compounds with rubber-clay nanocomposites, including their rheology, curing kinetics, mechanical properties, and many others. Rubber-clay nanocomposites are of growing interest to the scientific and technological community, and have been shown to improve rubber compound reinforcement and impermeability. These natural mineral fillers are of potential interest for large-scale applications and are already making an impact in several major fields. Packed with valuable information about the synthesis, processing, and mechanics of these reinforced rubbers, the book covers assorted rubber-clay nanocomposites applications, such as in automotive tires and as polymer fillers. Promoting common knowledge and interpretation of the most important aspects of rubber-clay nanocomposites, and clarifying the main results achieved in the field of rubbers and crosslinked rubbers—something not covered in other books in the field—Rubber-Clay Nanocomposites helps scientists understand morphology, vulcanization, permeability, processing methods, and characterization factors quickly and easily.
The first general texts on clay mineralogy and the practical applications of clay, written by R.E. Grim, were published some 40-50 years ago. Since then, a vast literature has accumulated but this information is scattered and not always accessible. The Handbook of Clay Science aims at assembling the scattered literature on the varied and diverse aspects that make up the discipline of clay science. The topics covered range from the fundamental structures (including textures) and properties of clays and clay minerals, through their environmental, health and industrial applications, to their analysis and characterization by modern instrumental techniques. Also included are the clay-microbe interaction, layered double hydroxides, zeolites, cement hydrates, genesis of clay minerals as well as the history and teaching of clay science. No modern book in the English language is available that is as comprehensive and wide-ranging in coverage as the Handbook of Clay Science.In providing a critical and up-to-date assessment of the accumulated information, this will serve as the first point of entry into the literature for both newcomers and graduate students, while for research scientists, university teachers, industrial chemists, and environmental engineers the book will become a standard reference text.* Presents contributions from 66 authors from 18 different countries who have come together to produce the most comprehensive modern handbook on clay science* Provides up-to-date concepts, properties, and reactivity of clays and clay minerals in a one-stop source of information* Covers classical and new environmental, industrial, and health applications of clays, as well as the instrumental techniques for clay mineral analysis* Combines geology, mineralogy, crystallography with physics, geotechnology, and soil mechanics together with inorganic, organic, physical, and colloid chemistry for a truly multidisciplinary approach