Download Free Clay Nanoparticles Book in PDF and EPUB Free Download. You can read online Clay Nanoparticles and write the review.

Clay Nanoparticles: Properties and Applications sets out the major properties of clay nanoparticles and their technological applications. The first part of the book focuses on the characterization of nanoclays, including layered, fibrous and tubular clay minerals. The second part illustrates the current and potential applications of nanoclays within material science and biotechnology. These include the development of geopolymers and bionanocomposites based on sustainable polymers filled with ecocompatible nanoclay. The potential use of nanoclays as flame retardants is also discussed, along with the correlation between the properties and potential applications of several nanoclay types. In particular, the applications explored include nanoclays as drug delivery systems and for environmental protection. The book provides a complete and multidisciplinary exploration of nanoclays, highlighting a range of perspectives within current nanotechnology research. Assesses the advantages of using nanoclays instead of conventional clay materials in product design Describes the major characterization techniques – both experimental and computational – for nanoclays Explores new fabrication techniques based on pristine and modified clay nanoparticles that are being used both in materials science and biotechnology
Clay Nanoparticles: Properties and Applications sets out the major properties of clay nanoparticles and their technological applications. The first part of the book focuses on the characterization of nanoclays, including layered, fibrous and tubular clay minerals. The second part illustrates the current and potential applications of nanoclays within material science and biotechnology. These include the development of geopolymers and bionanocomposites based on sustainable polymers filled with ecocompatible nanoclay. The potential use of nanoclays as flame retardants is also discussed, along with the correlation between the properties and potential applications of several nanoclay types. In particular, the applications explored include nanoclays as drug delivery systems and for environmental protection. The book provides a complete and multidisciplinary exploration of nanoclays, highlighting a range of perspectives within current nanotechnology research. Assesses the advantages of using nanoclays instead of conventional clay materials in product design Describes the major characterization techniques - both experimental and computational - for nanoclays Explores new fabrication techniques based on pristine and modified clay nanoparticles that are being used both in materials science and biotechnology
Clay–Polymer Nanocomposites is a complete summary of the existing knowledge on this topic, from the basic concepts of synthesis and design to their applications in timely topics such as high-performance composites, environment, and energy issues. This book covers many aspects of synthesis such as in- situ polymerization within the interlamellar spacing of the clays or by reaction of pristine or pre-modified clays with reactive polymers and prepolymers. Indeed, nanocomposites can be prepared at industrial scale by melt mixing. Regardless the synthesis method, much is said in this book about the importance of theclay pre-modification step, which is demonstrated to be effective, on many occasions, in obtaining exfoliated nanocomposites. Clay–Polymer Nanocomposites reports the background to numerous characterization methods including solid state NMR, neutron scattering, diffraction and vibrational techniques as well as surface analytical methods, namely XPS, inverse gas chromatography and nitrogen adsorption to probe surface composition, wetting and textural/structural properties. Although not described in dedicated chapters, numerous X-ray diffraction patterns of clay–polymer nanocomposites and reference materials are displayed to account for the effects of intercalation and exfoliations of layered aluminosilicates. Finally, multiscale molecular simulation protocols are presenting for predicting morphologies and properties of nanostructured polymer systems with industrial relevance. As far as applications are concerned, Clay–Polymer Nanocomposites examines structural composites such as clay–epoxy and clay–biopolymers, the use of clay–polymer nanocomposites as reactive nanocomposite fillers, catalytic clay-(conductive) polymers and similar nanocomposites for the uptake of hazardous compounds or for controlled drug release, antibacterial applications, energy storage, and more. The most comprehensive coverage of the state of the art in clay–polymer nanocomposites, from synthesis and design to opportunities and applications Covers the various methods of characterization of clay–polymer nanocomposites - including spectroscopy, thermal analyses, and X-ray diffraction Includes a discussion of a range of application areas, including biomedicine, energy storage, biofouling resistance, and more
This Special Issue focuses on the current state-of-the-art of “Polymer Clay Nano-Composites” for biomedical, anticorrosion, antibacterial, and other applications. Clay–polymer composite nanomaterials represent an emerging area of research. Loading polymers with clay particles essentially enhances the composite strength features. Of particular interest are different nano-assembly methods, such as silane mono and multilayers, polyelectrolyte layer-by-layer assembly, and others. An important development was reached for tubular and fibrous clay nanoparticles, such as halloysite, sepiolite, and imogolite. Polymer clay nanoparticles can be prepared as sheets with 1-nm thickness and width of a few hundred nm (e.g., kaolin and montmorillonite). Fibrous clays significantly reinforce the nano-composites in the assembly with biopolymers and other green polymers, leading to functional hybrid bio nano-composites. The scope of this Special Issue comprehensively includes the synthesis and characterization of polymer clay nano-composites used for several applications, including nano-clay polymer composites and hybrid nano-assemblies.
Nanomaterials from Clay Minerals: A New Approach to Green Functional Materials details the structure, properties and modification of natural nanoscale clay minerals and their application as the green constituent of functional materials. Natural nanomaterials from clay minerals have diverse morphologies, from 1D to 3D, including nanorods, nanofibers, nanotubes, nanosheets and nanopores. These structures show excellent adsorption, reinforcing, supporter, electronic, catalytic and biocompatible properties and are great as sustainable alternatives for toxic or expensive artificial materials. This book provides systematic coverage of clay nanomaterials as eco-friendly resources, emphasizing the importance of such materials in a range of industries, including biomedicine, energy and electronics. This book will provide an important reference for materials scientists and engineers who have an interest in sustainable material development. Presents systematic coverage of a broad range of nanomaterials from clay minerals, including Kaolinite, Smectite and Halloysite Depicts use cases for each mineral in a variety of applications, such as drug delivery, agriculture, and in the reinforcement of polymer materials Provides an overview on the advantages and limitations of nanomaterials from clay minerals, as well as chapters on the future potential of such materials
While nutraceuticals were verified to be expedient, they often lack stability, bioavailability, and permeability, and nano-nutraceuticals are being developed to afford a solution to the problem. Nanotechnology in Nutraceuticals: Production to Consumption delves into the promises and prospects of the application of nanotechnology to nutraceuticals, addressing concepts, techniques, and production methods. Nutraceuticals retain less stability, efficacy, and bioavailability when entering the human body. To overcome such problems, nanotechnology shows promise when applied as a tool to improve the quality and stability of nutraceuticals. This book discusses metallic nanoparticles and their applications in the food industry with specific application to nutraceuticals. It includes detailed discussion on potential functional properties of nutraceuticals with regard to antimicrobial activity, anti-inflammatory activity, and anti-cancer activity. Since nanoparticles can be toxic past a certain limit, implementing nanotechnology under thoughtful regulations is considered critical. The book addresses these issues with chapters covering the principles for the oversight of nanotechnologies and nanomaterials in nutraceuticals, the implications of regulatory requirements, the ethics and economics of nano-nutraceuticals, and consumer acceptance of nanotechnology based foods.
Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles for Drug Delivery is a comprehensive guide to PLGA nanoparticles for targeting various diseases, covering principles, formation, characterization, applications, regulations and the latest advances. Sections introduce the fundamental aspects of PLGA nanoparticles for drug delivery, including properties, preparation methods, characterization, drug loading methods, and drug release mechanisms, along with a focus on applications. Application of PLGA nanoparticles for the treatment of cancer, inflammatory, cerebral, cardiovascular, and infectious diseases, as well as in regenerative medicine, photodynamic and photothermal therapy, and gene therapy, are all explained in detail. The final chapters explore recent advances and regulatory aspects. This book is a valuable resource for researchers and advanced students across nanomedicine, polymer science, bio-based materials, chemistry, biomedicine, biotechnology, and materials engineering, as well as for industrial scientists and R&D professionals with an interest in nanoparticles for drug delivery, pharmaceutical formulations and regulations, and development of innovative biodegradable materials. Presents the fundamentals of PLGA nanoparticles, including properties, preparation, characterization, and biofate and cellular interactions Provides in-depth coverage of a broad range of specific applications of PLGA nanoparticles across disease treatment, regenerative medicine and therapeutic areas Offers a methodical approach to PLGA nanoparticles in drug delivery that is supported by data tables, illustrative figures and flowcharts
Clay-Containing Polymer Nanocomposites covers everything from fundamental understanding to real applications of clay-containing polymer nanocomposites, including environmental considerations. The book's coverage of fundamentals and generalities, in addition to in-depth coverage of polymer layered silicate nanocomposites, make it a valuable companion for beginners in the field as well as more seasoned researchers. This book provides a rare coherent approach to this class of materials. This title is ideal for polymer and material scientists, researchers, and engineers, including under- and post-graduate students who are interested in this exciting field of research. This book will also help industrial researchers and R&D managers who want to bring advanced polymeric material based products into the market. Details crystallization behavior and kinetics to aid in applications such as injection molding Covers melt-state rheological properties, aiding understanding of the processability of materials Presents applications and market potential, supporting R&D managers who want to bring advanced polymeric material-based products into the market.
This book has emerged out of our long-time research interests on the topic of latex film formation. Over the years we have built up a repertoire of slides used in conference presentations, short courses and tutorials on the topic. The story presented in this book has thereby taken shape as it has been told and re-told to a mix of academic and industrial audiences. The book presents a wide body of work accumulated by the polymer colloids community over the past five decades, but the selection of examples has been flavoured by our particular experimental interests and development of mathematical models. We intend the book to be a starting point for academic and industrial scientists beginning research on latex film formation. The emphasis is on fundam- tal mechanisms, however, and not on applications nor on specific effects of formu- tions. We hope that the book consolidates the understanding that has been achieved to-date in the literature in a more comprehensive way than is possible in a review article. We trust that the reader will appreciate the fascination of the topic.
This book provides a comprehensive description of the application of clay minerals as disinfectants and the ingredients of medicines. While the presently available literature highlights one or two aspects of medicinal clays, a comprehensive text on all their major pharmaceutical applications is lacking. This book endeavors to fill up this lacuna. It further elucidates the properties of clay minerals that facilitate their application in the protection of human health, and how these properties are related to the chemical compositions and internal structures of selected mineral groups, thus revealing to the students, teachers and researchers the underlying relationship of seemingly different disciplines like mineralogy, material science and medical science. The thought-provoking questions added at the end of each chapter will give the readers a better insight of this subject. The tangible definitions and explanations of all the relevant scientific terms provided in this book, both within the text and in a glossary list at the end, are expected to help the beginners to develop a clear-cut understanding regarding different aspects of the subject and clear any confusion resulting from the ambiguous usage of terms in the existing literature.