Download Free Clay In Engineering Geology Book in PDF and EPUB Free Download. You can read online Clay In Engineering Geology and write the review.

Concluding the trilogy on geological materials in construction, this authoritative volume reviews many uses of clays, ranging from simple fills to sophisticated products. Comprehensive and international coverage is achieved by an expert team, including geologists, engineers and architects. Packed with information prepared for a wide readership, this unique handbook is also copiously illustrated. The volume is dedicated to the memory of Professor Sir Alec Skempton. Various definitions of 'clay' are explored. Clay mineralogy is described, plus the geological formation of clay deposits and their fundamental materials properties. World and British clay deposits are reviewed and explained. New compositional data are provided for clay formations throughout the stratigraphic column. Investigative techniques and interpretation are considered, ranging from site exploration to laboratory assessment of composition and engineering performance. Major civil engineering applications are addressed, including earthworks, earthmoving and specialized roles utilizing clays. Traditional earthen building is included and shown to dominate construction in places. Clay-based construction materials are detailed, including bricks, ceramics and cements. The volume also includes a comprehensive glossary.
Engineering geology is an interdisciplinary subject concerned with the application of geological science to engineering practice, and it is therefore important for the engineering geologist to recognize the boundary between engineering application and purely scientific enquiry. Much research in applied clay science results from imperfectly understood engineering behaviour. Engineering geology is most closely allied to the geotechnical and materials areas of civil engineering. The scope of the present book is limited to the influence of clay but because clay is almost ubiquitous in earth materials the subject still remains broad. In soil and rock, clay is the smallest size fraction, but it is that very fact which often determines its major influences on engineering behaviour.In this book the author reviews the importance of clay in engineering geology and summarizes present knowledge in this field. The plan of the book has remained unchanged since the first edition was published in 1968 but the text, diagrams and reference lists have all been extensively updated. The first 5 chapters review the classification, origin, composition, fabric and physical chemistry of clays. Behavioural aspects, covered in the following 4 chapters, include moisture interaction, strength and rheology, soil stabilization and the use of clays as materials. The final 3 chapters describe methods of analysis of clays and soils.Clay in Engineering Geology contains material drawn from a wide variety of sources and, together with its literature review and indexes, will provide much of value to geologists, mineralogists, civil and geotechnical engineers concerned with applied clay science.
Developments in Engineering Geology is a showcase of the diversity in the science and practice of engineering geology. All branches of geology are applicable to solving engineering problems and this presents a wide frontier of scientific opportunity to engineering geology. In practice, diversity represents a different set of challenges with the distinctive character of the profession derived from the crossover between the disciplines of geology and engineering. This book emphasizes the importance of understanding the geological science behind the engineering behaviour of a soil or rock. It also highlights a continuing expansion in the practice areas of engineering geology and illustrates how this is opening new frontiers to the profession thereby introducing new knowledge and technology across a range of applications. This is initiating an evolution in the way geology is modelled in engineering, geohazard and environmental studies in modern and traditional areas of engineering geology.
'Engineering geology' is one of those terms that invite definition. The American Geological Institute, for example, has expanded the term to mean 'the application of the geological sciences to engineering practice for the purpose of assuring that the geological factors affecting the location, design, construction, operation and mainten ance of engineering works are recognized and adequately provided for'. It has also been defined by W. R. Judd in the McGraw-Hill Encyclopaedia of Science and Technology as 'the application of education and experience in geology and other geosciences to solve geological problems posed by civil engineering structures'. Judd goes on to specify those branches of the geological or geo-sciences as surface (or surficial) geology, structural/fabric geology, geohydro logy, geophysics, soil and rock mechanics. Soil mechanics is firmly included as a geological science in spite of the perhaps rather unfortunate trends over the years (now happily being reversed) towards purely mechanistic analyses which may well provide acceptable solutions for only the simplest geology. Many subjects evolve through their subject areas from an interdisciplinary background and it is just such instances that pose the greatest difficulties of definition. Since the form of educational development experienced by the practitioners of the subject ulti mately bears quite strongly upon the corporate concept of the term 'engineering geology', it is useful briefly to consider that educational background.
Soft Clay Engineering and Ground Improvement covers the design and implementation of ground improvement techniques as applicable to soft clays. This particular subject poses major geotechnical challenges in civil engineering. Not only civil engineers, but planners, architects, consultants and contractors are now aware what soft soils are and the risks associated with development of such areas. The book is designed as a reference and useful tool for those in the industry, both to consultants and contractors. It also benefits researchers and academics working on ground improvement of soft soils, and serves as an excellent overview for postgraduates. University lecturers are beginning to incorporate more ground improvement topics into their curricula, and this text would be ideal for short courses for practicing engineers. It includes several examples to assist a newcomer to carry out preliminary designs. The three authors, each with dozens of years of experience, have witnessed and participated in the rapid evolvement of ground improvement in soft soils. In addition, top-tier professionals who deal with soft clays and ground improvement on a daily basis have contributed, providing their expertise in dealing with real-world problems and practical solutions.
This first volume of a specialty 2-volume work contains 34 papers pertaining to the natural behaviour of diverse geomaterials found in different parts of the world. Each paper is organized along the outline: location and distribution, engineering geology, composition, state and index properties, structure, engineering properties, quality / reliability of data with reference to methods of sampling and testing, and relation to engineering problems. This extensive body of collated knowledge is integrated by three overview papers covering engineering geology, mechanical behaviour and engineering implications. Topics: Overview papers; Marine clays; Eastuarine Clays; Lacustrine clays; Stiff clays; Sands and other cohesionless soils; Residual and other tropical Soils; Weak rock.
The peculiar characteristics of clays provide it with very interesting adsorption qualities, especially for polar or ionisable molecules. Some of these characteristics include the silicates' sheet structure that makes a large surface area accessible for adsorption; the usually significant surface charge that can be responsible for strong electrostatic interactions; and clays' swelling properties and presence of exchangeable surface cations that facilitate ion-exchange mechanisms. Added to their wide availability and associated low cost, these characteristics have motivated in recent years an increasing interest in utilising natural, processed or chemically-modified clays for the removal of organic contaminants from aqueous solutions. This book discusses the application of clay materials for the removal of organic compounds from contaminated waters. It also discusses several other topics that include time and temperature related behaviour of clays; mechanical treatment of clay minerals; the workability of natural clays and clays in the ceramics industry; recent advances in hydraulic performance of clay liners; and the genesis, properties and industrial applications of bauxitic lithomargic clay.
Now in full colour, the third edition of this well established book provides a readable and highly illustrated overview of the aspects of geology that are most significant to civil engineers. Sections in the book include those devoted to the main rock types, weathering, ground investigation, rock mass strength, failures of old mines, subsidence on peats and clays, sinkholes on limestone and chalk, water in landslides, slope stabilization and understanding ground conditions. The roles of both natural and man-induced processes are assessed, and this understanding is developed into an appreciation of the geological environments potentially hazardous to civil engineering and construction projects. For each style of difficult ground, available techniques of site investigation and remediation are reviewed and evaluated. Each topic is presented as a double page spread with a careful mix of text and diagrams, with tabulated reference material on parameters such as bearing strength of soils and rocks. This new edition has been comprehensively updated and covers the entire spectrum of topics of interest for both students and practitioners in the field of civil engineering.
The Encyclopedia of Applied Geology is an international compendium of engineering geology topics prepared by experts from many countries. The volume contains more than eighty main entries in alphabetical order, dealing with hydrology, rock structure monitoring and soil mechanics in addition to engineering geology. Special topics focus on earth science information and sources, electrokinetics, forensic geology, geocryology, nuclear plant siting, photogrammetry, tunnels and tunnelling, urban geomorphology and well data systems.