Download Free Classifying Intelligence In Machines A Taxonomy Of Intelligent Control Book in PDF and EPUB Free Download. You can read online Classifying Intelligence In Machines A Taxonomy Of Intelligent Control and write the review.

The quest to create machines that can solve problems as humans do leads us to intelligent control. This field encompasses control systems that can adapt to changes and learn to improve their actions—traits typically associated with human intelligence. In this work we seek to determine how intelligent these classes of control systems are by quantifying their level of adaptability and learning. First we describe the stages of development towards intelligent control and present a definition based on literature. Based on the key elements of this definition, we propose a novel taxonomy of intelligent control methods, which assesses the extent to which they handle uncertainties in three areas: the environment, the controller, and the goals. This taxonomy is applicable to a variety of robotic and other autonomous systems, which we demonstrate through several examples of intelligent control methods and their classifications. Looking at the spread of classifications based on this taxonomy can help researchers identify where control systems can be made more intelligent.
This book constitutes the refereed proceedings of the 9th International Conference on Bioinspired Optimization Methods and Their Applications, BIOMA 2020, held in Brussels, Belgium, in November 2020. The 24 full papers presented in this book were carefully reviewed and selected from 68 submissions. The papers in this BIOMA proceedings specialized in bioinspired algorithms as a means for solving the optimization problems and came in two categories: theoretical studies and methodology advancements on the one hand, and algorithm adjustments and their applications on the other. Due to the Corona pandemic BIOMA 2020 was held as a virtual event.
This book presents the proceedings of the 4th International Conference on Advanced Intelligent Systems and Informatics 2018 (AISI2018), which took place in Cairo, Egypt from September 1 to 3, 2018. This international and interdisciplinary conference, which highlighted essential research and developments in the field of informatics and intelligent systems, was organized by the Scientific Research Group in Egypt (SRGE). The book is divided into several main sections: Intelligent Systems; Robot Modeling and Control Systems; Intelligent Robotics Systems; Machine Learning Methodology and Applications; Sentiment Analysis and Arabic Text Mining; Swarm Optimizations and Applications; Deep Learning and Cloud Computing; Information Security, Hiding, and Biometric Recognition; and Data Mining, Visualization and E-learning.
This is an open access book. As on date, huge volumes of data are being generated through sensors, satellites, and simulators. Modern research on data analytics and its applications reveal that several algorithms are being designed and developed to process these datasets, either through the use of sequential and parallel processes. In the current scenario of Industry 4.0, data analytics, artificial intelligence and machine learning are being used to support decisions in space and time. Further, the availability of Graphical Processing Units (GPUs) and Tensor Processing Units (TPUs) have enabled to processing of these datasets. Some of the applications of Artificial Intelligence, Machine Learning and Data Analytics are in the domains of Agriculture, Climate Change, Disaster Prediction, Automation in Manufacturing, Intelligent Transportation Systems, Health Care, Retail, Stock Market, Fashion Design, etc. The international conference on Applications of Machine Intelligence and Data Analytics aims to bring together faculty members, researchers, scientists, and industry people on a common platform to exchange ideas, algorithms, knowledge based on processing hardware and their respective application programming interfaces (APIs).
Highly comprehensive, detailed, and up-to-date overview of artificial intelligence and cybernetics, with practical examples and supplementary learning resources Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence is a comprehensive guide to the field of cybernetics and neural networks, , as well as the mathematical foundations of these technologies. The book provides a detailed explanation of various types of neural networks, including feedforward networks, recurrent neural networks, and convolutional neural networks, and their applications to different real-world problems. This groundbreaking book presents a pioneering exploration of machine learning within the framework of cybernetics. It marks a significant milestone in the field's history, as it is the first book to describe the development of machine learning from a cybernetics perspective. The introduction of the concept of "Cybernetical Intelligence" and the generation of new terminology within this context propel new lines of thought in the historical development of artificial intelligence. With its profound implications and contributions, this book holds immense importance and is poised to become a definitive resource for scholars and researchers in this field of study. Each chapter is specifically designed to introduce the theory with several examples. This comprehensive book includes exercise questions at the end of each chapter, providing readers with valuable opportunities to apply and strengthen their understanding of cybernetical intelligence. To further support the learning journey, solutions to these questions are readily accessible on our book's companion site. Additionally, the companion site offers programming practice exercises and assignments, enabling readers to delve deeper into the practical aspects of the subject matter. Cybernetical Intelligence includes information on: History and development of cybernetics and its influence on the development of neural networks Developments and innovations in artificial intelligence and machine learning, such as deep reinforcement learning, generative adversarial networks, and transfer learning Mathematical foundations of artificial intelligence and cybernetics, including linear algebra, calculus, and probability theory Ethical implications of artificial intelligence and cybernetics, and responsible and transparent development and deployment of AI systems Presenting a highly detailed and comprehensive overview of the field, with modern developments thoroughly discussed, Cybernetical Intelligence is an essential textbook resource that helps students make connections with the real-life engineering problems by providing both theory and practice, along with a myriad of helpful learning aids.
This book is a collection of best selected research papers presented at the International Conference on Communication and Artificial Intelligence (ICCAI 2020), held in the Department of Electronics & Communication Engineering, GLA University, Mathura, India, during 17–18 September 2020. The primary focus of the book is on the research information related to artificial intelligence, networks, and smart systems applied in the areas of industries, government sectors, and educational institutions worldwide. Diverse themes with a central idea of sustainable networking solutions are discussed in the book. The book presents innovative work by leading academics, researchers, and experts from industry.
This book highlights recent research on intelligent systems design and applications. It presents 100 selected papers from the 17th International Conference on Intelligent Systems Design and Applications (ISDA 2017), which was held in Delhi, India from December 14 to 16, 2017. The ISDA is a premier conference in the field of Computational Intelligence and brings together researchers, engineers and practitioners whose work involves intelligent systems and their applications in industry and the real world. Including contributions by authors from over 30 countries, the book offers a valuable reference guide for all researchers, students and practitioners in the fields of Computer Science and Engineering.
Many approaches have already been proposed for classification and modeling in the literature. These approaches are usually based on mathematical mod els. Computer systems can easily handle mathematical models even when they are complicated and nonlinear (e.g., neural networks). On the other hand, it is not always easy for human users to intuitively understand mathe matical models even when they are simple and linear. This is because human information processing is based mainly on linguistic knowledge while com puter systems are designed to handle symbolic and numerical information. A large part of our daily communication is based on words. We learn from various media such as books, newspapers, magazines, TV, and the Inter net through words. We also communicate with others through words. While words play a central role in human information processing, linguistic models are not often used in the fields of classification and modeling. If there is no goal other than the maximization of accuracy in classification and model ing, mathematical models may always be preferred to linguistic models. On the other hand, linguistic models may be chosen if emphasis is placed on interpretability.
Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for Python, Fourth Edition, is focused on the development and implementation of statistically motivated, data-driven techniques for digital image analysis of remotely sensed imagery and it features a tight interweaving of statistical and machine learning theory of algorithms with computer codes. It develops statistical methods for the analysis of optical/infrared and synthetic aperture radar (SAR) imagery, including wavelet transformations, kernel methods for nonlinear classification, as well as an introduction to deep learning in the context of feed forward neural networks. New in the Fourth Edition: An in-depth treatment of a recent sequential change detection algorithm for polarimetric SAR image time series. The accompanying software consists of Python (open source) versions of all of the main image analysis algorithms. Presents easy, platform-independent software installation methods (Docker containerization). Utilizes freely accessible imagery via the Google Earth Engine and provides many examples of cloud programming (Google Earth Engine API). Examines deep learning examples including TensorFlow and a sound introduction to neural networks, Based on the success and the reputation of the previous editions and compared to other textbooks in the market, Professor Canty’s fourth edition differs in the depth and sophistication of the material treated as well as in its consistent use of computer codes to illustrate the methods and algorithms discussed. It is self-contained and illustrated with many programming examples, all of which can be conveniently run in a web browser. Each chapter concludes with exercises complementing or extending the material in the text.
This paper describes an original method of global machine condition assessment for infrared condition monitoring and diagnostics systems. This method integrates two approaches: the first is processing and analysis of infrared images in the frequency domain by the use of 2D Fourier transform and a set of F-image features, the second uses fusion of classification results obtained independently for F-image features. To find the best condition assessment solution, the two different types of classifiers, k-nearest neighbours and support vector machine, as well as data fusion method based on Dezert–Smarandache theory have been investigated. This method has been verified using infrared images recorded during experiments performed on the laboratory model of rotating machinery. The results obtained during the research confirm that the method could be successfully used for the identification of operational conditions that are difficult to be recognised.