Download Free Classifications Of Quantum Field Theories Book in PDF and EPUB Free Download. You can read online Classifications Of Quantum Field Theories and write the review.

A lively and erudite introduction for readers with a background in undergraduate mathematics but no previous knowledge of physics.
This book reviews recent results on low-dimensional quantum field theories and their connection with quantum group theory and the theory of braided, balanced tensor categories. It presents detailed, mathematically precise introductions to these subjects and then continues with new results. Among the main results are a detailed analysis of the representation theory of U (sl ), for q a primitive root of unity, and a semi-simple quotient thereof, a classfication of braided tensor categories generated by an object of q-dimension less than two, and an application of these results to the theory of sectors in algebraic quantum field theory. This clarifies the notion of "quantized symmetries" in quantum fieldtheory. The reader is expected to be familiar with basic notions and resultsin algebra. The book is intended for research mathematicians, mathematical physicists and graduate students.
During the past 15 years, quantum field theory and classical statistical mechanics have merged into a single field, and the need for nonperturbative methods for the description of critical phenomena in statistical mechanics as well as for problems in elementary particle physics are generally acknowledged. Such methods formed the central theme of the 1987 Cargese Advanced Study Institut. e on "Nonpert. urbat. ive Quantum Field Theory." The use of conformal symmet. ry has been of central interest in recent years, and was a main subject at. t. he ASI. Conformal invariant quantum field theory describes statistical mechanical systems exactly at a critical point, and can be analysed to a remarkable ext. ent. by group t. heoretical methods. Very strong results have been obtained for 2-dimensional systems. Conformal field theory is also the basis of string theory, which offers some hope of providing a unified t. heory of all interactions between elementary particles. Accordingly, a number of lectures and seminars were presented on these two topics. After syst. ematic introductory lectures, conformal field theory on Riemann surfaces, orbifolds, sigma models, and application of loop group theory and Grassmannians were discussed, and some ideas on modular geometry were presented. Other lectures combined' traditional techniques of constructive quant. um field theory with new methods such as the use of index-t. heorems and infinite dimensional (Kac Moody) symmetry groups. The problems encountered in a quantum mechanical description of black holes were discussed in detail.
Research in string theory has generated a rich interaction with algebraic geometry, with exciting work that includes the Strominger-Yau-Zaslow conjecture. This monograph builds on lectures at the 2002 Clay School on Geometry and String Theory that sought to bridge the gap between the languages of string theory and algebraic geometry.
This book presents the (to date) most general approach to combinatorial constructions of topological quantum field theories (TQFTs) in three dimensions. The authors describe extended TQFTs as double functors between two naturally defined double categories: one of topological nature, made of 3-manifolds with corners, the other of algebraic nature, made of linear categories, functors, vector spaces and maps. Atiyah's conventional notion of TQFTs as well as the notion of modular functor from axiomatic conformal field theory are unified in this concept. A large class of such extended modular catergory is constructed, assigning a double functor to every abelian modular category, which does not have to be semisimple.
Providing a broad review of many techniques and their application to condensed matter systems, this book begins with a review of thermodynamics and statistical mechanics, before moving onto real and imaginary time path integrals and the link between Euclidean quantum mechanics and statistical mechanics. A detailed study of the Ising, gauge-Ising and XY models is included. The renormalization group is developed and applied to critical phenomena, Fermi liquid theory and the renormalization of field theories. Next, the book explores bosonization and its applications to one-dimensional fermionic systems and the correlation functions of homogeneous and random-bond Ising models. It concludes with Bohm–Pines and Chern–Simons theories applied to the quantum Hall effect. Introducing the reader to a variety of techniques, it opens up vast areas of condensed matter theory for both graduate students and researchers in theoretical, statistical and condensed matter physics.
We discuss classifications of UV complete supersymmetric theories in six dimensions, and (spin-)topological field theories admitting a finite global symmetry and possibly time-reversal symmetry in three dimensions. We also discuss a generalization of finite global symmetries and their gauging in two dimensions. First, we start with LSTs which are UV complete non-local 6D theories decoupled from gravity in which there is an intrinsic string scale. We present a systematic approach to the construction of supersymmetric LSTs via the geometric phases of F-theory. Our central result is that all LSTs with more than one tensor multiplet are obtained by a mild extension of 6D superconformal field theories (SCFTs) in which the theory is supplemented by an additional, non-dynamical tensor multiplet, analogous to adding an affine node to an ADE quiver, resulting in a negative semidefinite Dirac pairing. We also show that all 6D SCFTs naturally embed in an LST. Motivated by physical considerations, we show that in geometries where we can verify the presence of two elliptic fibrations, exchanging the roles of these fibrations amounts to T-duality in the 6D theory compactified on a circle. Second, we study the interpretation of O7$_+$-planes in F-theory, mainly in the context of the six dimensional models. In particular, we study how to assign gauge algebras and matter contents to seven-branes and their intersections, and the implication of anomaly cancellation in our construction, generalizing earlier analyses without any O7$_+$-planes. By including O7$_+$-planes we can realize 6d superconformal field theories hitherto unobtainable in F-theory, such as those with hypermultiplets in the symmetric representation of special unitary gauge algebra. We also examine a couple of compact models. These reproduce some famous perturbative models, and in some cases enhance their gauge symmetries non-perturbatively. Third, we argue that it is possible to describe fermionic phases of matter and spin-topological field theories in 2+1d in terms of bosonic "shadow" theories, which are obtained from the original theory by "gauging fermionic parity". The fermionic/spin theories are recovered from their shadow by a process of fermionic anyon condensation: gauging a one-form symmetry generated by quasi-particles with fermionic statistics. We apply the formalism to theories which admit gapped boundary conditions. We obtain Turaev-Viro-like and Levin-Wen-like constructions of fermionic phases of matter. We describe the group structure of fermionic SPT phases protected by the product of fermion parity and internal symmetry G. The quaternion group makes a surprise appearance. Fourth, we generalize two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous $\mathbb{Z}_2$ 1-form symmetry. We generalize this correspondence to Pin$^+$-TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous $\mathbb{Z}_2$ 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin$^+$-TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin$^+$-TFT admits a topological boundary condition, one can combine the above two statements to obtain a Turaev-Viro-like construction of Pin$^+$-TFTs. As an application of these ideas, we construct a large class of Pin$^+$-SPT phases. Finally, we recall that it is well-known that if we gauge a $\mathbb{Z}_n$ symmetry in two dimensions, a dual $\mathbb{Z}_n$ symmetry appears, such that re-gauging this dual $\mathbb{Z}_n$ symmetry leads back to the original theory. We describe how this can be generalized to non-Abelian groups, by enlarging the concept of symmetries from those defined by groups to those defined by unitary fusion categories. We will see that this generalization is also useful when studying what happens when a non-anomalous subgroup of an anomalous finite group is gauged: for example, the gauged theory can have non-Abelian group symmetry even when the original symmetry is an Abelian group. We then discuss the axiomatization of two-dimensional topological quantum field theories whose symmetry is given by a category. We see explicitly that the gauged version is a topological quantum field theory with a new symmetry given by a dual category.
The present volume emerged from the 3rd `Blaubeuren Workshop: Recent Developments in Quantum Field Theory', held in July 2007 at the Max Planck Institute of Mathematics in the Sciences in Leipzig/Germany. All of the contributions are committed to the idea of this workshop series: To bring together outstanding experts working in the field of mathematics and physics to discuss in an open atmosphere the fundamental questions at the frontier of theoretical physics.
These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.