Download Free Classification Of Pseudo Reductive Groups Book in PDF and EPUB Free Download. You can read online Classification Of Pseudo Reductive Groups and write the review.

In the earlier monograph Pseudo-reductive Groups, Brian Conrad, Ofer Gabber, and Gopal Prasad explored the general structure of pseudo-reductive groups. In this new book, Classification of Pseudo-reductive Groups, Conrad and Prasad go further to study the classification over an arbitrary field. An isomorphism theorem proved here determines the automorphism schemes of these groups. The book also gives a Tits-Witt type classification of isotropic groups and displays a cohomological obstruction to the existence of pseudo-split forms. Constructions based on regular degenerate quadratic forms and new techniques with central extensions provide insight into new phenomena in characteristic 2, which also leads to simplifications of the earlier work. A generalized standard construction is shown to account for all possibilities up to mild central extensions. The results and methods developed in Classification of Pseudo-reductive Groups will interest mathematicians and graduate students who work with algebraic groups in number theory and algebraic geometry in positive characteristic.
This monograph provides a comprehensive treatment of the theory of pseudo-reductive groups and gives their classification in a usable form. This second edition has been revised and updated, with Chapter 9 being completely rewritten via the useful new notion of 'minimal type' for pseudo-reductive groups.
This monograph provides a comprehensive treatment of the theory of pseudo-reductive groups and gives their classification in a usable form. This second edition has been revised and updated, with Chapter 9 being completely rewritten via the useful new notion of 'minimal type' for pseudo-reductive groups.
Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.
This volume contains the proceedings of the 2015 Clifford Lectures on Algebraic Groups: Structures and Actions, held from March 2–5, 2015, at Tulane University, New Orleans, Louisiana. This volume consists of six articles on algebraic groups, including an enhanced exposition of the classical results of Chevalley and Rosenlicht on the structure of algebraic groups; an enhanced survey of the recently developed theory of pseudo-reductive groups; and an exposition of the recently developed operational -theory for singular varieties. In addition, there are three research articles containing previously unpublished foundational results on birational automorphism groups of algebraic varieties; solution of Hermite-Joubert problem over -closed fields; and cohomological invariants and applications to classifying spaces. The old and new results presented in these articles will hopefully become cornerstones for the future development of the theory of algebraic groups and applications. Graduate students and researchers working in the fields of algebraic geometry, number theory, and representation theory will benefit from this unique and broad compilation of fundamental results on algebraic group theory.
Through the fundamental work of Deligne and Lusztig in the 1970s, further developed mainly by Lusztig, the character theory of reductive groups over finite fields has grown into a rich and vast area of mathematics. It incorporates tools and methods from algebraic geometry, topology, combinatorics and computer algebra, and has since evolved substantially. With this book, the authors meet the need for a contemporary treatment, complementing in core areas the well-established books of Carter and Digne–Michel. Focusing on applications in finite group theory, the authors gather previously scattered results and allow the reader to get to grips with the large body of literature available on the subject, covering topics such as regular embeddings, the Jordan decomposition of characters, d-Harish–Chandra theory and Lusztig induction for unipotent characters. Requiring only a modest background in algebraic geometry, this useful reference is suitable for beginning graduate students as well as researchers.
This book is an expanded version of the Hermann Weyl Lectures given at the Institute for Advanced Study in January 1986. It outlines some of what is now known about irreducible unitary representations of real reductive groups, providing fairly complete definitions and references, and sketches (at least) of most proofs. The first half of the book is devoted to the three more or less understood constructions of such representations: parabolic induction, complementary series, and cohomological parabolic induction. This culminates in the description of all irreducible unitary representation of the general linear groups. For other groups, one expects to need a new construction, giving "unipotent representations." The latter half of the book explains the evidence for that expectation and suggests a partial definition of unipotent representations.
Comprehensive introduction to the theory of algebraic group schemes over fields, based on modern algebraic geometry, with few prerequisites.
This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.
The first volume of a two-volume book offering a comprehensive account of the arithmetic theory of algebraic groups.