Download Free Classics In Spectroscopy Book in PDF and EPUB Free Download. You can read online Classics In Spectroscopy and write the review.

Analytik von Naturstoffen, die jeder kennt: Die Autoren dieses Bandes beschränken sich nicht auf die nüchterne Abhandlung von Daten und Verfahren, sondern erzählen die wahrhaft inspirierenden Geschichten jedes ihrer Moleküle. Dabei ist der rein methodische Teil so ausführlich und exakt beschrieben, dass der Band hervorragend für Lehre und Studium geeignet ist. Übungsaufgaben mit Lösungen und das attraktive Layout machen das Buch zu einem Muss für jeden Organiker und Spektroskopiker und die, die es werden wollen.
Two Nobel Laureates present a systematic, comprehensive account of the theory, techniques, experimental data, and interpretation involved in the study of microwave spectroscopy. Eighteen self-contained chapters on key topics may be read individually or serially, making this volume ideal as a reference as well as a textbook. 190 tables and figures. 1955 edition.
Informal, effective undergraduate-level text introduces vibrational and electronic spectroscopy, presenting applications of group theory to the interpretation of UV, visible, and infrared spectra without assuming a high level of background knowledge. 200 problems with solutions. Numerous illustrations. "A uniform and consistent treatment of the subject matter." — Journal of Chemical Education.
This book discusses many advances in optical physics and is intended mainly for experimentalists. The interaction of electromagnetic radiation with free atoms is introduced using classical or semi-classical calculations wherever possible. Topics discussed include the spontaneous emission of radiation, and atomic beam magnetic resonance experiments.
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful and widely used techniques in chemical research for investigating structures and dynamics of molecules. Advanced methods can even be utilized for structure determinations of biopolymers, for example proteins or nucleic acids. NMR is also used in medicine for magnetic resonance imaging (MRI). The method is based on spectral lines of different atomic nuclei that are excited when a strong magnetic field and a radiofrequency transmitter are applied. The method is very sensitive to the features of molecular structure because also the neighboring atoms influence the signals from individual nuclei and this is important for determining the 3D-structure of molecules. This new edition of the popular classic has a clear style and a highly practical, mostly non-mathematical approach. Many examples are taken from organic and organometallic chemistry, making this book an invaluable guide to undergraduate and graduate students of organic chemistry, biochemistry, spectroscopy or physical chemistry, and to researchers using this well-established and extremely important technique. Problems and solutions are included.
Combines clear and concise discussions of key NMR concepts with succinct and illustrative examples Designed to cover a full course in Nuclear Magnetic Resonance (NMR) Spectroscopy, this text offers complete coverage of classic (one-dimensional) NMR as well as up-to-date coverage of two-dimensional NMR and other modern methods. It contains practical advice, theory, illustrated applications, and classroom-tested problems; looks at such important ideas as relaxation, NOEs, phase cycling, and processing parameters; and provides brief, yet fully comprehensible, examples. It also uniquely lists all of the general parameters for many experiments including mixing times, number of scans, relaxation times, and more. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition begins by introducing readers to NMR spectroscopy - an analytical technique used in modern chemistry, biochemistry, and biology that allows identification and characterization of organic, and some inorganic, compounds. It offers chapters covering: Experimental Methods; The Chemical Shift; The Coupling Constant; Further Topics in One-Dimensional NMR Spectroscopy; Two-Dimensional NMR Spectroscopy; Advanced Experimental Methods; and Structural Elucidation. Features classical analysis of chemical shifts and coupling constants for both protons and other nuclei, as well as modern multi‐pulse and multi-dimensional methods Contains experimental procedures and practical advice relative to the execution of NMR experiments Includes a chapter-long, worked-out problem that illustrates the application of nearly all current methods Offers appendices containing the theoretical basis of NMR, including the most modern approach that uses product operators and coherence-level diagrams By offering a balance between volumes aimed at NMR specialists and the structure-determination-only books that focus on synthetic organic chemists, Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition is an excellent text for students and post-graduate students working in analytical and bio-sciences, as well as scientists who use NMR spectroscopy as a primary tool in their work.
Discussing strategies to determine the structure and machanisms of numerous compound classics, this book covers new chemical and elctrophoretic techniques for rapid sample preconcentration and separation. It summarizes breakthroughs in the theory and instrumentation of electrospray mass spectrometry in pharmaceutical and biomedical applications, pr
A bestselling classic reference, now expanded and updated to cover the latest instrumentation, methods, and applications The Second Edition of Fourier Transform Infrared Spectrometry brings this core reference up to date on the uses of FT-IR spectrometers today. The book starts with an in-depth description of the theory and current instrumentation of FT-IR spectrometry, with full chapters devoted to signal-to-noise ratio and photometric accuracy. Many diverse types of sampling techniques and data processing routines, most of which can be performed on even the less expensive instruments, are then described. Extensively updated, the Second Edition: * Discusses improvements in optical components * Features a full chapter on FT Raman Spectrometry * Contains new chapters that focus on different ways of measuring spectra by FT-IR spectrometry, including fourteen chapters on such techniques as microspectroscopy, internal and external reflection, and emission and photoacoustic spectrometry * Includes a new chapter introducing the theory of vibrational spectrometry * Organizes material according to sampling techniques Designed to help practitioners using FT-IR capitalize on the plethora of techniques for modern FT-IR spectrometry and plan their experimental procedures correctly, this is a practical, hands-on reference for chemists and analysts. It's also a great resource for students who need to understand the theory, instrumentation, and applications of FT-IR.
This revised and updated Second Edition of the best-selling reference/text is essential reading for students and scientists who seek a thorough and practical introduction to the field of polymer spectroscopy. Eleven chapters cover the fundamental aspects and experimental applications of the primary spectroscopic methods. The advantages and disadvantages of the various techniques for particular polymer systems are also discussed. The goal of the author is not to make the reader an expert in the field, but rather to provide enough information about the different spectroscopic methods that the reader can determine how the available techniques can be used to solve a particular polymer problem. This Second Edition contains new and updated information on techniques in IR and NMR, as well as an all-new chapter on Mass Spectrometry.
For beginners and specialists in other fields: the Nobel Laureate's introduction to atomic spectra and their relationship to atomic structures, stressing basics in a physical, rather than mathematical, treatment. 80 illustrations.