Download Free Classical Mechanics And Quantum Mechanics An Historic Axiomatic Approach Book in PDF and EPUB Free Download. You can read online Classical Mechanics And Quantum Mechanics An Historic Axiomatic Approach and write the review.

This unique textbook presents a novel, axiomatic pedagogical path from classical to quantum physics. Readers are introduced to the description of classical mechanics, which rests on Euler’s and Helmholtz’s rather than Newton’s or Hamilton’s representations. Special attention is given to the common attributes rather than to the differences between classical and quantum mechanics. Readers will also learn about Schrödinger’s forgotten demands on quantization, his equation, Einstein’s idea of ‘quantization as selection problem’. The Schrödinger equation is derived without any assumptions about the nature of quantum systems, such as interference and superposition, or the existence of a quantum of action, h. The use of the classical expressions for the potential and kinetic energies within quantum physics is justified. Key features: · Presents extensive reference to original texts. · Includes many details that do not enter contemporary representations of classical mechanics, although these details are essential for understanding quantum physics. · Contains a simple level of mathematics which is seldom higher than that of the common (Riemannian) integral. · Brings information about important scientists · Carefully introduces basic equations, notations and quantities in simple steps This book addresses the needs of physics students, teachers and historians with its simple easy to understand presentation and comprehensive approach to both classical and quantum mechanics..
Mechanics: Classical and Quantum is a 13-chapter book that begins by explaining the Lagrangian and Hamiltonian formulation of mechanics. The Hamilton-Jacobi theory, historical background of the quantum theory, and wave mechanics are then described. Subsequent chapters discuss the time-independent Schrödinger equation and some of its applications; the operators, observables, and the quantization of a physical system; the significance of expectation values; and the concept of measurement in quantum mechanics. The matrix mechanics and the "hydrogenic atom", an atom in which one electron moves under the influence of a nucleus of charge that, to a very good approximation, can be thought of as a point, are also presented. This book will be very useful to students studying this field of interest.
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
This book provides a clear understanding of quantum mechanics (QM) by developing it from fundamental postulates in an axiomatic manner, as its central theme. The target audience is physics students at master’s level. It avoids historical developments, which are piecemeal, not logically well knitted, and may lead to misconceptions. Instead, in the present approach all of QM and all its rules are developed logically starting from the fundamental postulates only and no other assumptions. Specially noteworthy topics have been developed in a smooth contiguous fashion following the central theme. They provide a new approach to understanding QM. In most other texts, these are presented as disjoint separate topics. Since the reader may not be acquainted with advanced mathematical topics like linear vector space, a number of such topics have been presented as “mathematical preliminary.” Standard topics, viz. derivation of uncertainty relations, simple harmonic oscillator by operator method, bound systems in one and three dimensions, angular momentum, hydrogen-like atom, and scattering in one and three dimensions, are woven into the central theme. Advanced topics like approximation methods, spin and generalized angular momenta, addition of angular momenta, and relativistic quantum mechanics have been reserved for Volume II. ​
A unique introductory text on quantum mechanics, from basic principles to historical perspective. * Includes description of the historical developments that led to the discovery of QM, often left out of other textbooks. * Emphasizes basic concepts that were essential in this discovery, placing them in context and making them more understandable to students. * Written in an easy-to-understand style and assuming no prior knowledge of the topic, this book provides a solid foundation for future study of quantum chemistry. * Includes problem sets for student use.
Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.
"The ebook introduces undergraduate students to the basic skills required to use non-relativistic quantum mechanics for bound and scattering problems in atomic, molecular and nuclear physics. Initial emphasis is on problems that admit analytic solutions. T"
Quantum Theory, together with the principles of special and general relativity, constitute a scientific revolution that has profoundly influenced the way in which we think about the universe and the fundamental forces that govern it. The Historical Development of Quantum Theory is a definitive historical study of that scientific work and the human struggles that accompanied it from the beginning. Drawing upon such materials as the resources of the Archives for the History of Quantum Physics, the Niels Bohr Archives, and the archives and scientific correspondence of the principal quantum physicists, as well as Jagdish Mehra's personal discussions over many years with most of the architects of quantum theory, the authors have written a rigorous scientific history of quantum theory in a deeply human context. This multivolume work presents a rich account of an intellectual triumph: a unique analysis of the creative scientific process. The Historical Development of Quantum Theory is science, history, and biography, all wrapped in the story of a great human enterprise. Its lessons will be an aid to those working in the sciences and humanities alike.
This volume provides a unique overview of recent Italian studies on the foundations of quantum mechanics and related historical, philosophical and epistemological topics. A gathering of scholars from diverse cultural backgrounds, the conference provided a forum for a fascinating exchange of ideas and perspectives on a range of open questions in quantum mechanics. The varied nature of the papers in this volume attests to the achievement of that aim with many contributions providing original solutions to established problems by taking into account recommendations from different disciplines.
This book presents research contributions focussing on the introduction of contemporary physics topics – mainly, but not exclusively, quantum physics – into high school currciula. Despite the important advances and discoveries in quantum physics and relativity which have revolutionized our views of nature and our everyday lives, the presence of these topics in high school physics education is still lacking. In this book physics education researchers report on the teaching and learning of quantum physics from different perspectives and discuss the design and use of different pedagogical approaches and educational pathways. There is still much debate as to what content is appropriate at high school level as well what pedagogical approaches and strategies should be adopted to support student learning. Currently there is a greater focus on how to teach modern physics at the high school level rather than classical physics. However, teachers still lack experience and availability of appropriate teaching and learning materials to support the coherent integration of Quantum Physics in high school curricula. All of the 19 papers presented in this book discuss innovative approaches for enhancing physics education in schools.