Download Free Classical Kinetic Theory Of Fluids Book in PDF and EPUB Free Download. You can read online Classical Kinetic Theory Of Fluids and write the review.

Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.
This monograph is intended to provide a comprehensive description of the rela tion between kinetic theory and fluid dynamics for a time-independent behavior of a gas in a general domain. A gas in a steady (or time-independent) state in a general domain is considered, and its asymptotic behavior for small Knudsen numbers is studied on the basis of kinetic theory. Fluid-dynamic-type equations and their associated boundary conditions, together with their Knudsen-layer corrections, describing the asymptotic behavior of the gas for small Knudsen numbers are presented. In addition, various interesting physical phenomena derived from the asymptotic theory are explained. The background of the asymptotic studies is explained in Chapter 1, accord ing to which the fluid-dynamic-type equations that describe the behavior of a gas in the continuum limit are to be studied carefully. Their detailed studies depending on physical situations are treated in the following chapters. What is striking is that the classical gas dynamic system is incomplete to describe the behavior of a gas in the continuum limit (or in the limit that the mean free path of the gas molecules vanishes). Thanks to the asymptotic theory, problems for a slightly rarefied gas can be treated with the same ease as the corresponding classical fluid-dynamic problems. In a rarefied gas, a temperature field is di rectly related to a gas flow, and there are various interesting phenomena which cannot be found in a gas in the continuum limit.
This book goes beyond the scope of other works in the field with its thorough treatment of applications in a wide variety of disciplines. The third edition features a new section on constants of motion and symmetry and a new appendix on the Lorentz-Legendre expansion.
In this monograph, the density ?uctuation theory of transport coe?cients of simple and complex liquids is described together with the kinetic theory of liquids, the generic van der Waals equation of state, and the modi?ed free volume theory. The latter two theories are integral parts of the density ?- tuation theory, which enables us to calculate the density and temperature dependence of transport coe?cients of liquids from intermolecular forces. The terms nanoscience and bioscience are the catch phrases currently in fashion in science. It seems that much of the fundamentals remaining unsolved or poorly understood in the science of condensed matter has been overshadowed by the frenzy over the more glamorous disciplines of the former, shunned by novices, and are on the verge of being forgotten. The transport coe?cients of liquids and gases and related thermophysical properties of matter appear to be one such area in the science of macroscopic properties of molecular systems and statisticalmechanicsofcondensedmatter. Evennano-andbiomaterials,h- ever, cannot be fully and appropriately understood without ?rm grounding and foundations in the macroscopic and molecular theories of transport pr- ertiesandrelatedthermophysicalpropertiesofmatterinthecondensedphase. Oneisstilldealingwithsystemsmadeupofnotafewparticlesbutamultitude of them, often too many to count, to call them few-body problems that can be understoodwithoutthehelpofstatisticalmechanicsandmacroscopicphysics. In the density ?uctuation theory of transport coe?cients, the basic approach taken is quite di?erent from the approaches taken in the conventional kinetic theories of gases and liquids.
This book introduces physics students and teachers to the historical development of the kinetic theory of gases, by providing a collection of the most important contributions by Clausius, Maxwell and Boltzmann, with introductory surveys explaining their significance. In addition, extracts from the works of Boyle, Newton, Mayer, Joule, Helmholtz, Kelvin and others show the historical context of ideas about gases, energy and irreversibility. In addition to five thematic essays connecting the classical kinetic theory with 20th century topics such as indeterminism and interatomic forces, there is an extensive international bibliography of historical commentaries on kinetic theory, thermodynamics, etc. published in the past four decades.The book will be useful to historians of science who need primary and secondary sources to be conveniently available for their own research and interpretation, along with the bibliography which makes it easier to learn what other historians have already done on this subject.
A thorough examination of kinetic theory and its successes in understanding and describing irreversible phenomena in physical systems.
This book can be described as a student's edition of the author's Dynamical Theory of Gases. It is written, however, with the needs of the student of physics and physical chemistry in mind, and those parts of which the interest was mainly mathematical have been discarded. This does not mean that the book contains no serious mathematical discussion; the discussion in particular of the distribution law is quite detailed; but in the main the mathematics is concerned with the discussion of particular phenomena rather than with the discussion of fundamentals.