Download Free Circulating Tumor Cells In Breast Cancer Metastatic Disease Book in PDF and EPUB Free Download. You can read online Circulating Tumor Cells In Breast Cancer Metastatic Disease and write the review.

Expert laboratory and clinical researchers from around the world review how to design and evaluate studies of tumor markers and examine their use in breast cancer patients. The authors cover both the major advances in sophisticated molecular methods and the state-of-the-art in conventional prognostic and predictive indicators. Among the topics discussed are the relevance of rigorous study design and guidelines for the validation studies of new biomarkers, gene expression profiling by tissue microarrays, adjuvant systemic therapy, and the use of estrogen, progesterone, and epidermal growth factor receptors as both prognostic and predictive indicators. Highlights include the evaluation of HER2 and EGFR family members, of p53, and of UPA/PAI-1; the detection of rare cells in blood and marrow; and the detection and analysis of soluble, circulating markers.
This important book provides up-to-date information on a series of topical issues relating to the approach to minimal residual disease in breast cancer patients. It first explains how the study of minimal residual disease and circulating and disseminated tumor cells (CTCs/DTCs) can assist in the understanding of breast cancer metastasis. A series of chapters then discuss the various technologies available for the detection and characterization of CTCs and DTCs, pinpointing their merits and limitations. Detailed consideration is given to the relevance of CTCs and DTCs, and their detection, to clinical research and practice. The role of other blood-based biomarkers is also addressed, and the closing chapters debate the challenges facing drug and biomarker co-development and the use of CTCs for companion diagnostic development. This book will be of interest and assistance to all who are engaged in the modern management of breast cancer.
Cancer cell biology research in general, and anti-cancer drug development specifically, still relies on standard cell culture techniques that place the cells in an unnatural environment. As a consequence, growing tumor cells in plastic dishes places a selective pressure that substantially alters their original molecular and phenotypic properties.The emerging field of regenerative medicine has developed bioengineered tissue platforms that can better mimic the structure and cellular heterogeneity of in vivo tissue, and are suitable for tumor bioengineering research. Microengineering technologies have resulted in advanced methods for creating and culturing 3-D human tissue. By encapsulating the respective cell type or combining several cell types to form tissues, these model organs can be viable for longer periods of time and are cultured to develop functional properties similar to native tissues. This approach recapitulates the dynamic role of cell–cell, cell–ECM, and mechanical interactions inside the tumor. Further incorporation of cells representative of the tumor stroma, such as endothelial cells (EC) and tumor fibroblasts, can mimic the in vivo tumor microenvironment. Collectively, bioengineered tumors create an important resource for the in vitro study of tumor growth in 3D including tumor biomechanics and the effects of anti-cancer drugs on 3D tumor tissue. These technologies have the potential to overcome current limitations to genetic and histological tumor classification and development of personalized therapies.
The analysis of circulating tumor cells (CTCs) as a real-time liquid biopsy approach can be used to obtain new insights into metastasis biology, and as companion diagnostics to improve the stratification of therapies and to obtain insights into the therapy-induced selection of cancer cells. In this book, we will cover all the different facets of CTCs to assemble a huge corpus of knowledge on cancer dissemination: technologies for their enrichment, detection, and characterization; their analysis at the single-cell level; their journey as CTC microemboli; their clinical relevance; their biology with the epithelial-to-mesenchymal transition (EMT); their stem-cell properties; their potential to initiate metastasis at distant sites; their ex vivo expansion; and their escape from the immune system.
This book offers a comprehensive overview of recent developments in the field of breast cancer biology. It is a complete and descriptive reference on motioning pathways and new treatment options for the future transnational scientists and clinicians working on cancer research and treatment. We greatly appreciate the work of all the contributors to this book. They have brought with them tremendous diversity of perspectives and fields, which is truly reflective of the complexity of the topic, and they have come together in this project to serve as the node of multidisciplinary collaboration in this field. Finally, we must acknowledge the thousands of cancer patients who have participated in the studies, and who have inspired us to gather information to significantly progress knowledge in the field in recent years.
With the rapid development of biotechnologies, single-cell sequencing has become an important tool for understanding the molecular mechanisms of diseases, defining cellular heterogeneities and characteristics, and identifying intercellular communications and single-cell-based biomarkers. Providing a clear overview of the clinical applications, the book presents state-of-the-art information on immune cell function, cancer progression, infection, and inflammation gained from single-cell DNA or RNA sequencing. Furthermore, it explores the role of target gene methylation in the pathogenesis of diseases, with a focus on respiratory cancer, infection and chronic diseases. As such it is a valuable resource for clinical researchers and physicians, allowing them to refresh their knowledge and improve early diagnosis and therapy for patients.
Recent studies have highlighted that epithelial-mesenchymal transition (EMT) is not only about cell migration and invasion, but it can also govern many other important elements such as immunosuppression, metabolic reprogramming, senescence-associated secretory phenotype (SASP), stem cell properties, therapy resistance, and tumor microenvironment interactions. With the on-going debate about the requirement of EMT for cancer metastasis, an emerging focus on intermediate states of EMT and its reverse process mesenchymal-epithelial transition (MET) offer new ideas for metastatic requirements and the dynamics of EMT/MET during the entire metastatic cascade. Therefore, we would like to initiate discussions on viewing EMT and its downstream signaling networks as a fulcrum of cellular plasticity, and a facilitator of the adaptive responses of cancer cells to distant organ microenvironments and various therapeutic assaults. We hereby invite scientists who have prominently contributed to this field, and whose valuable insights have led to the appreciation of epithelial-mesenchymal plasticity as a more comprehensive mediator of the adaptive response of cancer cells, with huge implications in metastasis, drug resistance, tumor relapse, and patient survival.
Drug Resistance in Colorectal Cancer: Molecular Mechanisms and Therapeutic Strategies, Volume Eight, summarizes the molecular mechanisms of drug resistance in colorectal cancer, along with the most up-to-date therapeutic strategies available. The book discusses reasons why colorectal tumors become refractory during the progression of the disease, but also explains how drug resistance occurs during chemotherapy. In addition, users will find the current therapeutic strategies used by clinicians in their practice in treating colorectal cancer. The combination of conventional anticancer drugs with chemotherapy-sensitizing agents plays a pivotal role in improving the outcome of colorectal cancer patients, in particular those with drug-resistant cancer cells. From a clinical point-of-view, the content of this book provides clinicians with updated therapeutic strategies for a better choice of drugs for drug-resistant colorectal cancer patients. It will be a valuable source for cancer researchers, oncologists and several members of biomedical field who are dedicated to better treat patients with colorectal cancer.
This book presents comprehensive coverage on the importance of good nutrition in the treatment and management of obesity, cancer and diabetes. Naturally occurring bioactive compounds are ubiquitous in most dietary plants available to humans and provide opportunities for the management of diseases. The text provides information about the major causes of these diseases and their association with nutrition. The text also covers the role of dietary phytochemicals in drug development and their pathways. Later chapters emphasize novel bioactive compounds as anti-diabetic, anti-cancer and anti-obesity agents and describe their mechanisms to regulate cell metabolism. Written by global team of experts, Dietary Phytochemicals: A Source of Novel Bioactive Compounds for the Treatment of Obesity, Cancer and Diabetes describes the potentials of novel phytochemicals, their sources, and underlying mechanism of action. The chapters were drawn systematically and incorporated sequentially to facilitate proper understanding. This book is intended for nutritionists, physicians, medicinal chemists, drug developers in research and development, postgraduate students and scientists in area of nutrition and life sciences.