Download Free Chips 2020 Vol 2 Book in PDF and EPUB Free Download. You can read online Chips 2020 Vol 2 and write the review.

The release of this second volume of CHIPS 2020 coincides with the 50th anniversary of Moore’s Law, a critical year marked by the end of the nanometer roadmap and by a significantly reduced annual rise in chip performance. At the same time, we are witnessing a data explosion in the Internet, which is consuming 40% more electrical power every year, leading to fears of a major blackout of the Internet by 2020. The messages of the first CHIPS 2020, published in 2012, concerned the realization of quantum steps for improving the energy efficiency of all chip functions. With this second volume, we review these messages and amplify upon the most promising directions: ultra-low-voltage electronics, nanoscale monolithic 3D integration, relevant-data, brain- and human-vision-inspired processing, and energy harvesting for chip autonomy. The team of authors, enlarged by more world leaders in low-power, monolithic 3D, video, and Silicon brains, presents new vistas in nanoelectronics, promising Moore-like exponential growth sustainable through to the 2030s.
In this book, a global team of experts from academia, research institutes and industry presents their vision on how new nano-chip architectures will enable the performance and energy efficiency needed for AI-driven advancements in autonomous mobility, healthcare, and man-machine cooperation. Recent reviews of the status quo, as presented in CHIPS 2020 (Springer), have prompted the need for an urgent reassessment of opportunities in nanoelectronic information technology. As such, this book explores the foundations of a new era in nanoelectronics that will drive progress in intelligent chip systems for energy-efficient information technology, on-chip deep learning for data analytics, and quantum computing. Given its scope, this book provides a timely compendium that hopes to inspire and shape the future of nanoelectronics in the decades to come.
The chips in present-day cell phones already contain billions of sub-100-nanometer transistors. By 2020, however, we will see systems-on-chips with trillions of 10-nanometer transistors. But this will be the end of the miniaturization, because yet smaller transistors, containing just a few control atoms, are subject to statistical fluctuations and thus no longer useful. We also need to worry about a potential energy crisis, because in less than five years from now, with current chip technology, the internet alone would consume the total global electrical power! This book presents a new, sustainable roadmap towards ultra-low-energy (femto-Joule), high-performance electronics. The focus is on the energy-efficiency of the various chip functions: sensing, processing, and communication, in a top-down spirit involving new architectures such as silicon brains, ultra-low-voltage circuits, energy harvesting, and 3D silicon technologies. Recognized world leaders from industry and from the research community share their views of this nanoelectronics future. They discuss, among other things, ubiquitous communication based on mobile companions, health and care supported by autonomous implants and by personal carebots, safe and efficient mobility assisted by co-pilots equipped with intelligent micro-electromechanical systems, and internet-based education for a billion people from kindergarden to retirement. This book should help and interest all those who will have to make decisions associated with future electronics: students, graduates, educators, and researchers, as well as managers, investors, and policy makers. Introduction: Towards Sustainable 2020 Nanoelectronics.- From Microelectronics to Nanoelectronics.- The Future of Eight Chip Technologies.- Analog–Digital Interfaces.- Interconnects and Transceivers.- Requirements and Markets for Nanoelectronics.- ITRS: The International Technology Roadmap for Semiconductors.- Nanolithography.- Power-Efficient Design Challenges.- Superprocessors and Supercomputers.- Towards Terabit Memories.- 3D Integration for Wireless Multimedia.- The Next-Generation Mobile User-Experience.- MEMS (Micro-Electro-Mechanical Systems) for Automotive and Consumer.- Vision Sensors and Cameras.- Digital Neural Networks for New Media.- Retinal Implants for Blind Patients.- Silicon Brains.- Energy Harvesting and Chip Autonomy.- The Energy Crisis.- The Extreme-Technology Industry.- Education and Research for the Age of Nanoelectronics.- 2020 World with Chips.
Biotechnology in Healthcare presents up-to-date knowledge on the emerging field of biotechnology as applied to the healthcare industry. Biotechnology has revolutionized healthcare in the last two decades by developing and introducing novel diagnostics, therapeutics, and preventive measures; whether it is noncommunicable or communicable disease, primary or secondary care, or public health, it has shown its immense potential to provide a solution to the healthcare providers, physicians, and allied health care professionals.The second volume, Applications and Initiatives, contains 19 chapters focused on the applications of biotechnology related to public healthcare, hospital management, oncology, neurodegenerative and infectious diseases, regenerative medicine, IVF, clinical trials, precision food, FMGCs, PPCPs, pharmaceuticals, and smart technologies to monitor pandemic. Further, this volume also presents government initiatives and entrepreneurship challenges in healthcare biotechnology sector.This is a valuable resource for students, biotechnologists, bioinformaticians, clinicians, and members of biomedical and healthcare fields who need to understand more about the promising developments of the emerging field of biotechnology in healthcare. - Describes various applications of novel biotechnology approaches in healthcare - Presents applications of biotechnology in primary and secondary healthcare and in public health - Discusses government initiatives, challenges and opportunities, and entrepreneurship development in the area of healthcare biotechnology
Handbook of Nanomaterials: Biomedicine, Environment, Food, and Agriculture offers a comprehensive resource that introduces the role of nanotechnology and nanomaterials in a broad range of areas, covering fundamentals, methods, and applications.In this volume, dedicated sections focus on key applications across biomedicine, environmental remediation, food, agriculture, and other areas. In each chapter, detailed but concise information is provided on a specific application, and other key state-of-the-art technologies such as biomimetic nanotechnology and nanotechnology in 3D printing are included. In the final part of the book, there is in-depth coverage of environmental and regulatory issues relating to nanotechnology.This book is of interest to researchers and advanced students approaching nanotechnology from a range of disciplines, including materials science and engineering, chemistry, chemical engineering, electronics, energy, biomedicine, environmental science, food science, and agriculture, as well as scientists, engineers, and R&D professionals with an interest in the use of nanomaterials across a range of industries. - Introduces the reader to key applications of nanomaterials - Provides broad, systematic, concise coverage, supporting readers from a range of disciplines - Covers applications across biomedicine, environmental remediation, food, agriculture, and more
This volume comprises the select proceedings of the Indian Geotechnical Conference (IGC) 2020. The contents focus on recent developments in geotechnical engineering for sustainable tomorrow. The volume covers the topics related advances in ground improvement of weak foundation soils for various civil engineering projects and design/construction of reinforced soil structures with different fill materials using synthetic and natural reinforcements in different forms.
Electronic Enclosures, Housings and Packages considers the problem of heat management for electronics from an encasement perspective. It addresses enclosures and their applications for industrial electronics, as well as LED lighting solutions for stationary and mobile markets. The book introduces fundamental concepts and defines dimensions of success in electrical enclosures. Other chapters discuss environmental considerations, shielding, standardization, materials selection, thermal management, product design principles, manufacturing techniques and sustainability. Final chapters focus on business fundamentals by outlining successful technical propositions and potential future directions.
Recent Advances in Biosensor Technology (Volume 1) is a comprehensive guide to the latest developments in biosensor technology, written by experts in bioengineering and biosensor development. The book is an essential resource for researchers and biomedical engineers interested in the latest developments in biosensor technology. The volume covers the applications of biosensors in different fields. It features 9 chapters that cover key themes in this area, including biosensors for natural bioactive compounds, wearable biosensors in healthcare, 3D bioprinting and biosensors, biosensors for neurodegenerative diseases, protein biosensing and pathogen detection, biosensors for diabetes diagnosis, paper-based biosensors in diagnostics, enzymatic biosensors and their applications, and nanobiosensors in agriculture. One of the key features of this book is its detailed discussion of the novel research findings in biosensor technology, providing readers with the most up-to-date information in the field. Each chapter includes a comprehensive review of relevant literature, as well as practical examples to demonstrate the potential applications of biosensors in various fields. Furthermore, this book includes detailed references for further reading, making it an excellent resource for readers looking to deepen their understanding of biosensor technology.
This richly illustrated book explores the fascinating and ubiquitous occurrence of spirals and vortices in human culture and in nature. Spiral forms have been used as elements in the arts for thousands of years, whereas their role in nature and science – from DNA and sea shells to galaxies – is still a topic of investigation in numerous fields. Following an introduction to the cultural history of spiral forms, the book presents contributions from leading experts, who describe the origins, mechanisms and dynamics of spirals and vortices in their special fields. As a whole the book provides a valuable source of information, while also taking the reader on an aesthetic and scientific journey through the world of spiral forms.