Download Free Chinas Energy And Mineral Industries Book in PDF and EPUB Free Download. You can read online Chinas Energy And Mineral Industries and write the review.

This book is based on papers presented at the China Energy and Mineral Policies and Planning Conference held at the East-West Center. It discusses the energy and minerals development policies of China as well as the outlook for trade in technology, energy commodities, and minerals.
This open access book is an encyclopaedic analysis of the current and future energy system of the world’s most populous country and second biggest economy. What happens in China impacts the planet. In the past 40 years China has achieved one of the most remarkable economic growth rates in history. Its GDP has risen by a factor of 65, enabling 850,000 people to rise out of poverty. Growth on this scale comes with consequences. China is the world’s biggest consumer of primary energy and the world’s biggest emitter of CO2 emissions. Creating a prosperous and harmonious society that delivers economic growth and a high quality of life for all will require radical change in the energy sector, and a rewiring of the economy more widely. In China’s Energy Revolution in the Context of the Global Energy Transition, a team of researchers from the Development Research Center of the State Council of China and Shell International examine how China can revolutionise its supply and use of energy. They examine the entire energy system: coal, oil, gas, nuclear, renewables and new energies in production, conversion, distribution and consumption. They compare China with case studies and lessons learned in other countries. They ask which technology, policy and market mechanisms are required to support the change and they explore how international cooperation can smooth the way to an energy revolution in China and across the world. And, they create and compare scenarios on possible pathways to a future energy system that is low-carbon, affordable, secure and reliable.
Minerals are part of virtually every product we use. Common examples include copper used in electrical wiring and titanium used to make airplane frames and paint pigments. The Information Age has ushered in a number of new mineral uses in a number of products including cell phones (e.g., tantalum) and liquid crystal displays (e.g., indium). For some minerals, such as the platinum group metals used to make cataytic converters in cars, there is no substitute. If the supply of any given mineral were to become restricted, consumers and sectors of the U.S. economy could be significantly affected. Risks to minerals supplies can include a sudden increase in demand or the possibility that natural ores can be exhausted or become too difficult to extract. Minerals are more vulnerable to supply restrictions if they come from a limited number of mines, mining companies, or nations. Baseline information on minerals is currently collected at the federal level, but no established methodology has existed to identify potentially critical minerals. This book develops such a methodology and suggests an enhanced federal initiative to collect and analyze the additional data needed to support this type of tool.
This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DoE) based on data collected and research performed during 2010. In the report, DoE describes plans to: (1) develop its first integrated research agenda addressing critical materials, building on three technical workshops convened by the DoE during November and December 2010; (2) strengthen its capacity for information-gathering on this topic; and (3) work closely with international partners, including Japan and Europe, to reduce vulnerability to supply disruptions and address critical material needs. Charts and tables. This is a print on demand report.
The world is currently undergoing an historic energy transition, driven by increasingly stringent decarbonisation policies and rapid advances in low-carbon technologies. The large-scale shift to low-carbon energy is disrupting the global energy system, impacting whole economies, and changing the political dynamics within and between countries. This open access book, written by leading energy scholars, examines the economic and geopolitical implications of the global energy transition, from both regional and thematic perspectives. The first part of the book addresses the geopolitical implications in the world’s main energy-producing and energy-consuming regions, while the second presents in-depth case studies on selected issues, ranging from the geopolitics of renewable energy, to the mineral foundations of the global energy transformation, to governance issues in connection with the changing global energy order. Given its scope, the book will appeal to researchers in energy, climate change and international relations, as well as to professionals working in the energy industry.
‘Coal’ and ‘China’ to some extent have become synonymous. China is by far the largest user of coal in the world. In 2016, coal production in China amounted to 3.21 billion tons, about half of the total global coal production. Coal consumption accounts for more than 65% of primary energy consumption in China. The Chinese coal industry greatly contributes to the economic development in China, the second largest economy in the world. However, periodically, ubiquitous images of smog blanketing major Chinese cities are viewed all over the world. Coal combustion is one of the important contributors to smog, which is considered to be a major environmental and human health problem for China and other countries. News stories also highlight the periodic coal mine disasters that kill hundreds of Chinese coal miners annually. The need to address these and other human health, environmental, and mine safety issues and to maximize resource recovery and use justifies a vigorous coal research effort. This book brings together experts on almost every aspect of coal geology, coal production, composition and use of the coal and its by-products, and coal’s environmental and human health impacts. The chapters in this book were originally published in a special issue of the International Geology Review.
A forceful reckoning with the relationship between energy and power through the history of what was once East Asia’s largest coal mine. The coal-mining town of Fushun in China’s Northeast is home to a monstrous open pit. First excavated in the early twentieth century, this pit grew like a widening maw over the ensuing decades, as various Chinese and Japanese states endeavored to unearth Fushun’s purportedly “inexhaustible” carbon resources. Today, the depleted mine that remains is a wondrous and terrifying monument to fantasies of a fossil-fueled future and the technologies mobilized in attempts to turn those developmentalist dreams into reality. In Carbon Technocracy, Victor Seow uses the remarkable story of the Fushun colliery to chart how the fossil fuel economy emerged in tandem with the rise of the modern technocratic state. Taking coal as an essential feedstock of national wealth and power, Chinese and Japanese bureaucrats, engineers, and industrialists deployed new technologies like open-pit mining and hydraulic stowage in pursuit of intensive energy extraction. But as much as these mine operators idealized the might of fossil fuel–driven machines, their extractive efforts nevertheless relied heavily on the human labor that those devices were expected to displace. Under the carbon energy regime, countless workers here and elsewhere would be subjected to invasive techniques of labor control, ever-escalating output targets, and the dangers of an increasingly exploited earth. Although Fushun is no longer the coal capital it once was, the pattern of aggressive fossil-fueled development that led to its ascent endures. As we confront a planetary crisis precipitated by our extravagant consumption of carbon, it holds urgent lessons. This is a groundbreaking exploration of how the mutual production of energy and power came to define industrial modernity and the wider world that carbon made.