Download Free Chemistry Of The Cosmos Book in PDF and EPUB Free Download. You can read online Chemistry Of The Cosmos and write the review.

If you have ever wondered how we get from the awesome impersonality of the Big Bang universe to the point where living creatures can start to form, and evolve into beings like you, your friends and your family, wonder no more. Steve Miller provides us with a tour through the chemical evolution of the universe, from the formation of the first molecules all the way to the chemicals required for life to evolve. Using a simple Hydrogen molecule – known as H-three-plus - as a guide, he takes us on a journey that starts with the birth of the first stars, and how, in dying, they pour their hearts out into enriching the universe in which we live. Our molecular guide makes its first appearance at the source of the Chemical Cosmos, at a time when only three elements and a total of 11 molecules existed. From those simple beginnings, H-three-plus guides us down river on the violent currents of exploding stars, through the streams of the Interstellar Medium, and into the delta where new stars and planets form. We are finally left on the shores of the sea of life. Along the way, we meet the key characters who have shaped our understanding of the chemistry of the universe, such as Cambridge physicist J.J. Thomson and the Chicago chemist Takeshi Oka. And we are given an insider’s view of just how astronomers, making use of telescopes and Earth-orbiting satellites, have put together our modern view of the Chemical Cosmos.
"In this accessible and engaging introduction, [John Lennox] guides us through the great debates about science and faith, and offers incisive assessments of the issues." Alister McGrath, Professor of Science and Religion, University of Oxford Is the rigorous pursuit of scientific knowledge really compatible with a sincere faith in God? Building on the arguments put forward in God’s Undertaker: Has Science Buried God?, Prof John Lennox examines afresh the plausibility of a Christian theistic worldview in the light of some of the latest developments in scientific understanding. Prof Lennox focuses on the areas of evolutionary theory, the origins of life and the universe, and the concepts of mind and consciousness to provide a detailed and compelling introduction to the science and religion debate. He also offers his own reasoning as to why he continues to be convinced by a Christian approach to explaining these phenomena. Robust in its reasoning, but respectful in tone, this book is vital reading for anyone exploring the relationship between science and God.
Introducing astrochemistry to a wide audience, this book describes how molecules formed in chemical reactions occur in a range of environments in interstellar and circumstellar space, from shortly after the Big Bang up to the present epoch. Stressing that chemistry in these environments needs to be driven, it helps identify these drivers and the various chemical networks that operate giving rise to signature molecules that enable the physics of the region to be better understood. The book emphasises, in a non-mathematical way, the chemistry of the Milky Way Galaxy and its planet-forming regions, describes how other galaxies may have rather different chemistries and shows how chemistry was important even in the Early Universe when most of the elements had yet to be formed. This book will appeal to anyone with a general interest in chemistry, from students to professional scientists working in interdisciplinary areas and non-scientists fascinated by the evolving and exciting story of chemistry in the cosmos.
While there have been many books on cosmology and galactic and stellar evolution in which abundance analysis of astrophysical objects has played some part, this book is the first one for several years where specialists in the various relevant fields discuss the basis and implications of the subject as a whole. The major aim of the book is to bring together the results from high redshift studies and galactic studies in a coherent way and to cover relevant aspects of nuclear and atomic physics.
This book is an appealing, concise, and factual account of the chemistry of the solar system. It includes basic facts about the chemical composition of the different bodies in the solar system, the major chemical processes involved in the formation of the Sun, planets, and small objects, and the chemical processes that determine their current chemical make-up. The book summarizes compositional data but focuses on the chemical processes and where relevant, it also emphasizes comparative planetology. There are numerous informative summary tables which illustrate the similarities (or differences) that help the reader to understand the processes described. Data is presented in graphical form which is useful for identifying common features of the major processes that determine the current chemical state of the planets. The book will interest general readers with a background in chemistry who will enjoy reading about the chemical diversity of the solar system's objects. It will serve as an introductory textbook for graduate classes in planetary sciences but will also be very popular with professional researchers in academia and government, college professors, and postgraduate fellows.
Collects six short illustrated volumes covering topics in mathematics, physics, chemistry, biology, evolution, and astronomy.
An interdisciplinary book for scientists interested in the origin and existence of life in our universe, first published in 2007.
A rigorous and scientific analysis of the myriad possibilities of life beyond our planet. ÒAre we alone in the universe?Ó This tantalizing question has captivated humanity over millennia, but seldom has it been approached rigorously. Today the search for signatures of extraterrestrial life and intelligence has become a rapidly advancing scientific endeavor. Missions to Mars, Europa, and Titan seek evidence of life. Laboratory experiments have made great strides in creating synthetic life, deepening our understanding of conditions that give rise to living entities. And on the horizon are sophisticated telescopes to detect and characterize exoplanets most likely to harbor life. Life in the Cosmos offers a thorough overview of the burgeoning field of astrobiology, including the salient methods and paradigms involved in the search for extraterrestrial life and intelligence. Manasvi Lingam and Abraham Loeb tackle three areas of interest in hunting for life Òout thereÓ: first, the pathways by which life originates and evolves; second, planetary and stellar factors that affect the habitability of worlds, with an eye on the biomarkers that may reveal the presence of microbial life; and finally, the detection of technological signals that could be indicative of intelligence. Drawing on empirical data from observations and experiments, as well as the latest theoretical and computational developments, the authors make a compelling scientific case for the search for life beyond what we can currently see. Meticulous and comprehensive, Life in the Cosmos is a master class from top researchers in astrobiology, suggesting that the answer to our age-old question is closer than ever before.
Cosmochemistry is a rapidly evolving field of planetary science and the second edition of this classic text reflects the exciting discoveries made over the past decade from new spacecraft missions. Topics covered include the synthesis of elements in stars, behaviour of elements and isotopes in the early solar nebula and planetary bodies, and compositions of extra-terrestrial materials. Radioisotope chronology of the early Solar System is also discussed, as well as geochemical exploration of planets by spacecraft, and cosmochemical constraints on the formation of solar systems. Thoroughly updated throughout, this new edition features significantly expanded coverage of chemical fractionation and isotopic analyses; focus boxes covering basic definitions and essential background material on mineralogy, organic chemistry and quantitative topics; and a comprehensive glossary. An appendix of analytical techniques and end-of-chapter review questions, with solutions available at www.cambridge.org/cosmochemistry2e, also contribute to making this the ideal teaching resource for courses on the Solar System's composition as well as a valuable reference for early career researchers.
The dynamic field of astrochemistry brings together ideas of physics, astrophysics, biology and chemistry to the study of molecules between stars, around stars and on planets. Astrochemistry: from Astronomy to Astrobiology provides a clear and concise introduction to this rapidly evolving multidisciplinary subject. Starting with the Molecular Universe, the text covers the formation of the elements, simple models of stars and their classification. It then moves on to draw on the theme of the Origins of Life to study interstellar chemistry, meteorite and comet chemistry as well as the chemistry of planets. Prebiotic chemistry and astrobiology are explored by examining the extremes of the biosphere on Earth, seeing how this may be applied to life in other solar systems. Astrochemsitry assumes a basic familiarity with principles of physical and organic chemistry but no prior knowledge of biology or astrophysics. This innovative text incorporates results from the latest research and ground and space missions, with key images enhanced by a colour plate section. includes latest research and results from ground and space missions colour plate section summary of concepts and calculations at the end of each chapter accompanying website www.wiley.co/go/shawastrochemistry This book will be an ideal text for an undergraduate course in Astrochemistry and an essential tool for postgraduates entering the field.